
© Copyright IBM Corporation 2007 Trademarks
Embedding Hamlets Page 1 of 29

Embedding Hamlets
Writing Web-based user interfaces for embedded devices
running OSGi

René Pawlitzek (rpa@zurich.ibm.com)
Research and Development Engineer
IBM

Skill Level: Intermediate

Date: 19 Jun 2007

The open source Hamlets framework can help aid your Web development and
properly separate content from presentation. The OSGi framework provides
an excellent tool for development on embedded devices. Together, the two
frameworks work as a team to provide browser-based interactivity to the humblest
gadgets -- such as the lowly coffee maker. Read on to find out how it works.

Hamlets provide an easily used and easily understood framework for developing
Web-based applications. Due to their lightweight design and modest resource
requirements, they are also well suited for the embedded space. In this article, you
will learn how to use Hamlets to write Web-based user interfaces for embedded
devices running OSGi.

What are Hamlets?

Servlets are an ideal choice for Web development for a number of reasons:
portability, efficiency, safety, extensibility, and flexibility. Few viable alternatives exist
that can match the power and elegance of servlets.

Despite their attractive properties, out-of-the-box servlets lack an important feature:
support for the separation of content from presentation. If servlets are exclusively
used for the development of Web-based applications, HTML and Java™ code
inevitably end up intermingled in the same source file.

To solve this problem, I proposed an easy-to-use and easy-to-understand framework
called Hamlets for the development of Web-based applications (see Resources for
more information on Hamlets). The framework is the result of a radical software
simplification effort; thus, you should be able to understand it quickly.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:rpa@zurich.ibm.com

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 2 of 29

A Hamlet is a Java servlet extension that uses the Simple API for XML (SAX) to
read template files. While a template file is being read, the Hamlet uses a small set
of callback functions (implemented by a HamletHandler) to add dynamic content to
those places in the template that are marked with special tags and IDs (see Figure
1).

Figure 1. A Hamlet uses SAX for reading content from a template file and calls
a HamletHandler to add dynamic content

A template compiler can be used to accelerate Hamlets. The template compiler
uses SAX to read template files and converts the content into Java source code.
Subsequently, it calls the standard JDK Java compiler to generate Java bytecode.
At runtime, this code is executed by the Hamlet and calls a HamletHandler to add
dynamic content, as illustrated in Figure 2. For detailed information on how template
compilation works, see Resources.

Figure 2. A template compiler converts the content of a template file into Java
bytecode, which is executed by the Hamlet and calls a HamletHandler to add
dynamic content

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 3 of 29

Hamlets now open source

The Hamlet framework has been available at IBM alphaWorks since
September of 2005. On March 7, 2007, IBM decided to release the
Hamlets code under a BSD license to help spread the technology. The
framework is now hosted at Sourceforge; see Resources for a link.

The project name Hamlets used in this publication refers to an internal project for the
development of a servlet-based framework for separation of content and presentation
in Web-based applications. Version 1.4 of the Hamlets framework (officially known
as the IBM Servlet-Based Content Creation Framework) is available from IBM
alphaWorks (see Resources for a link).

What is OSGi?
The OSGi Alliance (formerly known as the Open Services Gateway initiative) is an
independent nonprofit organization formed in 1999. It defines open specifications
for a Java technology-based service platform that can be remotely managed. The
specification consists of two parts: the OSGi framework and a set of standard service
definitions.

The OSGi framework implements a runtime environment for applications, called
bundles, which execute together in a single Java Virtual Machine (JVM), as illustrated
in Figure 3. Bundles can be installed, started, stopped, updated, and uninstalled
dynamically without a reboot. A service registry allows bundles to be notified when
services appear or disappear. Bundles can then adapt accordingly. The framework
was originally targeted at Internet gateways with home automation applications,
but it has also been successfully used in other domains, such as the automotive
industry, consumer electronics, and in the desktop application space. For more
detailed information, read the technical white paper entitled "About the OSGi Service
Platform" (see Resources).

A large number of services and libraries have been developed for the OSGi
framework. Hamlets are an ideal addition to the framework because they allow the
creation of Web-based applications in which presentation (HTML code) and logic
(Java code) are strictly separated.

Figure 3. OSGi architecture

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 4 of 29

The Hello bundle
The most basic OSGi application is shown in Listing 1. It consists of an Activator
class that implements the start() and stop() methods of the BundleActivator
interface. When the application is installed and started, the OSGi framework calls the
Activator's start() method to print "Hello World!" The Activator's stop() method is
invoked when the application is stopped.

Listing 1. Activator for the Hello bundle

package com.ibm.zurich.HelloBundle;

import org.osgi.framework.*;

public class Activator implements BundleActivator {

 public void start (BundleContext aContext) {
 System.out.println ("Hello World!");
 } // start

 public void stop (BundleContext aContext) {
 } // stop

} // Activator

The bundle is the delivery and development unit of OSGi applications. A bundle is
a jar file that contains the application's bytecode and its resources. In addition, it
contains a file -- the manifest -- that describes the bundle. Listing 2 describes the
Hello bundle.

Listing 2. Manifest for the Hello bundle

Manifest-Version: 1.0
Bundle-Name: Hello Bundle
Bundle-SymbolicName: hellobundle
Bundle-Version: 1.0.0
Bundle-Description: This bundle prints 'Hello World!'.
Bundle-Vendor: Rene Pawlitzek
Bundle-Activator: com.ibm.zurich.HelloBundle.Activator
Bundle-Category: example
Import-Package: org.osgi.framework

The manifest contains the bundle's name, version, description, vendor, category,
and activator, which is the name of the class that implements the ActivatorBundle
interface. The manifest also names the import packages. Refer to the OSGi Service
Platform specification (see Resources) for more information about the manifest file
format and syntax.

Bundles can conveniently be built using Ant scripts. I used my favorite IDE and the
script in Listing 3 to build hellobundle.jar.

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 5 of 29

Listing 3. Ant script to build the Hello bundle

<?xml version="1.0"?>

<project name="HelloBundle" default="all">

 <target name="all" depends="init, compile, jar" />

 <target name="compile">
 <javac destdir="./classes" srcdir="." />
 </target>

 <target name="jar">
 <jar basedir="./classes" jarfile ="./build/hellobundle.jar"
 includes="**/*" manifest="./meta-inf/MANIFEST.MF" />
 </target>

 <target name="init">
 <mkdir dir="./classes" />
 <mkdir dir="./build" />
 </target>

 <target name="clean">
 <delete dir="./classes" />
 <delete dir="./build" />
 </target>

</project>

Prior to deployment, you can use WinZip or a similar tool to inspect hellobundle.jar.
You should see the MANIFEST.MF and Activator.class files.

There are a number of implementations for the OSGi Service platform specification.
Among them are Knopflerfish, Eclipse Equinox, and Apache Felix, three open source
implementations (see Resources). I chose to use Kopflerfish 1.3.5 for all examples
in this article. If you load hellobundle.jar from the Knopflerfish OSGi desktop, you
should see the "Hello World!" printout in the console (the bottom part of the window
shown in Figure 4).

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 6 of 29

Figure 4. Knopflerfish OSGi desktop running the Hello bundle

If you've come this far, you have already learned how to create, deploy, and run an
OSGi application.

The Monitor bundle
Now I'll create a more useful program that monitors the life cycle of bundles and
services within the OSGi framework. When an application registers a listener, it is
notified by the framework when bundles are installed, started, stopped, or uninstalled.
Similarly, an application can be notified when services (provided by bundles) are
registered, unregistered, or modified. Well-behaved software never assumes that a
service is available at all times. Instead, it registers a listener to receive notification
events and adapts accordingly.

The Activator class for the Monitor application implements BundleActivator and
two additional interfaces: BundleListener and ServiceListener. As you saw before
with the Hello bundle, the OSGi framework calls the start() method when the
Monitor bundle is started. Instead of printing "Hello world!", in this app you use the
bundle context to register a bundle and a service listener with addBundleListener()
and addServiceListener(). The listeners are removed in the stop() method with

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 7 of 29

removeBundleListener() and removeServiceListener() when the Monitor bundle is
stopped.

The serviceChanged() and bundleChanged() methods (both implemented by the
Activator class) receive notification events from the OSGi framework when a service
is registered, unregistered, or modified, and when a bundle is installed, started,
stopped, or uninstalled. The ServiceEvent and BundleEvent classes contain detailed
information about a change, including a reference to the service or the bundle.
serviceChanged() and bundleChanged() print this information. All this is illustrated in
Listing 4.

Listing 4. Activator for the Monitor bundle
package com.ibm.zurich.MonitorBundle;

import org.osgi.framework.*;

public class Activator implements BundleActivator, ServiceListener, BundleListener {

 public void start (BundleContext aContext) throws Exception {
 aContext.addBundleListener (this);
 aContext.addServiceListener (this);
 } // start

 public void stop (BundleContext aContext) {
 aContext.removeServiceListener (this);
 aContext.removeBundleListener (this);
 } // stop

 /* ----- implementation of ServiceListener ----- */

 public void serviceChanged (ServiceEvent aEvent) {
 String action = null;
 switch (aEvent.getType ()) {
 case ServiceEvent.MODIFIED:
 action = "modified";
 break;
 case ServiceEvent.REGISTERED:
 action = "registered";
 break;
 case ServiceEvent.UNREGISTERING:
 action = "unregistered";
 break;
 } // switch
 if (action != null) {
 ServiceReference ref = aEvent.getServiceReference ();
 String classes[] = (String[]) ref.getProperty ("objectClass");
 System.out.println ("Service '" + classes[0] + "' is " + action);
 } // if
 } // serviceChanged

 /* ----- implementation of BundleListener ----- */

 public void bundleChanged (BundleEvent aEvent) {
 String action = null;

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 8 of 29

 switch (aEvent.getType ()) {
 case BundleEvent.INSTALLED:
 action = "installed";
 break;
 case BundleEvent.STARTED:
 action = "started";
 break;
 case BundleEvent.STOPPED:
 action = "stopped";
 break;
 case BundleEvent.UNINSTALLED:
 action = "uninstalled";
 break;
 } // switch
 if (action != null) {
 Bundle bundle = aEvent.getBundle ();
 String name = (String) bundle.getHeaders().get (Constants.BUNDLE_NAME);
 System.out.println ("Bundle '" + name + "' is " + action);
 } // if
 } // bundleChanged

} // Activator

The manifest and Ant build script for the Monitor bundle are almost identical to their
Hello bundle counterparts, and thus are not illustrated here.

The HelloServlet bundle
The OSGi framework features an HTTP service that allows the execution of servlets.
The next bundle provides and registers a Hello servlet, which then becomes available
through HTTP. The servlet's output (the "Hello world!" greeting) will be displayed
in a browser. I will use a ServiceTracker object (which is based on the previously
presented ServiceListener interface) to receive notification events when the HTTP
service changes.

The Activator class for the HelloServlet bundle implements the start() and stop()
methods of the BundleActivator interface. In start(), a HelloServlet instance is
created and stored for later use in an instance variable (servlet). Furthermore,
a ServiceTracker object is instantiated and opened to track the HTTP service.
The ServiceTracker constructor is called with the bundle context (context), the
name of the service to track (HttpService.class.getName()), and the current
Activator instance (this). The Activator class implements the three methods of
the ServiceTrackerCustomizer interface (addingService(), modifiedService(), and
removedService()) that are invoked by the service tracker when the HTTP service is
added, modified, or removed. This is illustrated in Listing 5.

Listing 5. Activator for the HelloServlet bundle
package com.ibm.zurich.HelloServletBundle;

import org.osgi.framework.*;
import org.osgi.util.tracker.*;
import org.osgi.service.http.*;

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 9 of 29

public class Activator implements BundleActivator, ServiceTrackerCustomizer {

 public static BundleContext context = null;

 private HttpService httpService;
 private HelloServlet servlet;

 public void start (BundleContext aContext) {
 context = aContext;
 servlet = new HelloServlet ();
 ServiceTracker tracker =
 new ServiceTracker (context, HttpService.class.getName (), this);
 tracker.open ();
 } // start

 public void stop (BundleContext aContext) {
 unregisterServlet (httpService);
 servlet = null;
 context = null;
 } // stop

 private void registerServlet (HttpService aHttpService) {
 try {
 if (aHttpService != null)
 aHttpService.registerServlet ("/hello", servlet, null, null);
 System.out.println ("Registered /hello servlet");
 } catch (Exception e) {
 System.out.println ("Unable to register servlet");
 } // try
 } // registerServlet

 private void unregisterServlet (HttpService aHttpService) {
 try {
 if (aHttpService != null)
 aHttpService.unregister ("/hello");
 System.out.println ("Unregistered /hello servlet");
 } catch (Exception e) {
 System.out.println ("Unable to unregister servlet");
 } // try
 } // unregisterServlet

 /* ----- implementation of ServiceTrackerCustomizer ----- */

 public Object addingService (ServiceReference aRef) {
 httpService = (HttpService) context.getService (aRef);
 registerServlet (httpService);
 return httpService;
 } // addingService

 public void modifiedService (ServiceReference aRef, Object aObj) {
 httpService = (HttpService) context.getService (aRef);
 registerServlet (httpService);
 } // modifiedService

 public void removedService (ServiceReference aRef, Object aObj) {
 } // removedService

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 10 of 29

} // Activator

The tracker object will eventually call the addingService() method to inform you
that the HTTP service is available. Take this opportunity to register the Hello servlet
that was previously created in start(). The servlet is now ready for use and locally
accessible at the URL http://localhost:8080/hello, as you can see in Figure 5.

Figure 5. HelloServlet bundle saying hello to the world

The servlet's output is generated by a sequence of println() statements in the
doGet() method of the HelloServlet class, as you can see in Listing 6. Embedding
HTML in Java code is acceptable for very small programs. However, for larger
applications, it results in severe maintenance problems. Hamlets solve this problem,
as you will see in the Coffee Machine example later in this article.

Listing 6. Hello servlet
package com.ibm.zurich.HelloServletBundle;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws
 ServletException {

 try {

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 11 of 29

 res.setContentType ("text/html");
 PrintWriter out = res.getWriter ();
 out.println ("<HTML>");
 out.println ("<HEAD><TITLE>Hello world!</TITLE></HEAD>");
 out.println ("<BODY>");
 out.println ("Hello world!");
 out.println ("</BODY>");
 out.println ("</HTML>");
 out.flush ();
 } catch (Exception e) {
 throw new ServletException (e);
 } // try

 } // doGet

} // HelloServlet

Now assume that the current HTTP service is replaced with a more sophisticated
implementation. Obviously, the tracker object will call the removedService() method
followed by the addingService() method. It is not necessary to unregister the
Hello servlet in removedService(), but you must re-register the servlet with the new
improved HTTP service to make it available again. Similarly, you re-register the Hello
servlet in modifiedService() whenever the HTTP service is modified. The Hello
servlet is unregistered in the stop() method, which is called when the bundle is
stopped.

The Ant build script and the manifest for the HelloServlet bundle are mostly identical
to their counterparts for the other bundles that you saw above. Note that the
manifest, shown in Listing 7, names a few additional import packages.

Listing 7. Hello servlet
Manifest-Version: 1.0
Bundle-Name: Hello Servlet Bundle
Bundle-SymbolicName: helloservletbundle
Bundle-Version: 1.0.0
Bundle-Description: This bundles provides a servlet to print 'Hello World!'.
Bundle-Vendor: Rene Pawlitzek
Bundle-Activator: com.ibm.zurich.HelloServletBundle.Activator
Bundle-Category: example
Import-Package: org.osgi.framework, org.osgi.util.tracker, org.osgi.service.http,
javax.servlet, javax.servlet.http

The Hamlet bundle
Next, you'll create the Hamlet bundle to make the Hamlet framework (which comes
in the form of a jar library called hamlet.jar) available to the OSGi infrastructure. This
allows you to separate HTML from Java code in your bundles. No activator class is
required for this bundle. The Ant build script, shown in Listing 8, simply packages
hamlet.jar and MANIFEST.MF into a jar file called hamletbundle.jar.

Listing 8. Ant script to build the Hamlet bundle
<?xml version="1.0"?>

<project name="HamletBundle" default="all">

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 12 of 29

 <target name="all" depends="init, jar" />

 <target name="jar">
 <jar basedir="./jar" jarfile ="./build/hamletbundle.jar"
 includes="hamlet.jar" manifest="./meta-inf/MANIFEST.MF" />
 </target>

 <target name="init">
 <mkdir dir="./build" />
 </target>

 <target name="clean">
 <delete dir="./build" />
 </target>

</project>

The manifest for hamletbundle.jar, shown in Listing 9, names not only the import
packages but also the export packages. Note that the bundle category is now lib.

Listing 9. Manifest for the Hamlet bundle

Manifest-Version: 1.0
Bundle-Name: Hamlet Bundle
Bundle-SymbolicName: hamletbundle
Bundle-Version: 1.0.0
Bundle-Description: This bundle provides the Hamlets framework.
Bundle-Vendor: Rene Pawlitzek
Bundle-ClassPath: hamlet.jar
Bundle-Category: lib
Export-Package: com.ibm.hamlet, com.ibm.hamlet.helpers
Import-Package: org.osgi.framework, javax.servlet, javax.servlet.http, org.apache.log4j,
org.xml.sax, org.xml.sax.helpers

The Hamlet bundle shows up in the bundle view when you load it from the
Knopflerfish OSGi desktop, as you can see in Figure 6.

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 13 of 29

Figure 6. Knopflerfish OSGi desktop showing the Hamlet bundle

At present, the Hamlet framework depends on Log4j for logging services. Thus,
you need to build and install a Log4j bundle (containing log4j.jar); this can be
accomplished in the same way in which you build the Hamlet bundle. (See
Resources for a link to Log4j.)

The Coffee Machine bundle
In this final example, you'll develop a bundle that provides a Web-based user
interface for a network-enabled coffee machine. You can set the coffee machine's
timer from anywhere in the world using a browser. You're using Hamlets to separate
presentation and logic, so you will not see any HTML in the Java code, and vice
versa. Furthermore, you're using the model-view-controller (MVC) design pattern for
the implementation.

The Activator class, illustrated in Listing 10, again implements the
BundleActivator interface with its two methods start() and stop(). The
OSGi framework initially calls start() where logging is configured with
BasicConfigurator.configure() and the coffee machine model (M) is initialized
with CoffeeMachineTimer.getTimer().start(). Next, the coffee machine's view
(V) and controller (C) are created. The view, an instance of CoffeeMachine, is a
Hamlet, and the controller, an instance of CoffeeMachineController, is a servlet

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 14 of 29

(see Figure 7). Finally, as in the HelloServlet bundle, a ServiceTracker object is
instantiated and opened to track the life cycle of the HTTP service. Whenever the
HTTP service changes, the tracker calls addingService(), modifiedService(), and
removedService(), which are part of the ServiceTrackerCustomizer interface that
Activator implements.

Figure 7. MVC design pattern for CoffeeMachine bundle

Listing 10. Activator for the CoffeeMachine bundle
package com.ibm.zurich.CoffeeMachineBundle;

import javax.servlet.http.*;
import org.apache.log4j.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;
import org.osgi.service.http.*;

public class Activator implements BundleActivator, ServiceTrackerCustomizer {

 public static BundleContext context = null;

 // log4j
 private static Category category = Category.getInstance (Activator.class.getName ());

 private HttpService httpService;
 private HttpServlet controller;
 private CoffeeMachine view;

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 15 of 29

 public void start (BundleContext aContext) {
 context = aContext;
 BasicConfigurator.resetConfiguration ();
 BasicConfigurator.configure ();
 CoffeeMachineTimer.getTimer().start ();
 view = new CoffeeMachine ();
 controller = new CoffeeMachineController ();
 ServiceTracker tracker =
 new ServiceTracker (context, HttpService.class.getName (), this);
 tracker.open ();
 } // start

 public void stop (BundleContext aContext) {
 unregister (httpService);
 CoffeeMachineTimer.getTimer().stop ();
 controller = null;
 view = null;
 context = null;
 } // stop

 private void register (HttpService aHttpService) {
 try {
 if (aHttpService != null) {
 aHttpService.registerServlet ("/CoffeeMachine", view, null, null);
 category.debug ("Registered '/CoffeeMachine' hamlet");
 aHttpService.registerServlet ("/CoffeeMachineController",
 controller, null, null);
 category.debug ("Registered '/CoffeeMachineController' servlet");
 HttpContext httpContext = new CoffeeMachineContext (context);
 aHttpService.registerResources ("/Include", "/Resources", httpContext);
 category.debug ("Registered '/Include' resources");
 } // if
 } catch (Exception e) {
 category.error ("Unable to register", e);
 } // try
 } // register

 private void unregister (HttpService aHttpService) {
 try {
 if (aHttpService != null) {
 aHttpService.unregister ("/CoffeeMachine");
 category.debug ("Unregistered '/CoffeeMachine' hamlet");
 aHttpService.unregister ("/CoffeeMachineController");
 category.debug ("Unregistered '/CoffeeMachineController' servlet");
 aHttpService.unregister ("/Include");
 category.debug ("Unregistered '/Include' resources");
 } // if
 } catch (Exception e) {
 category.error ("Unable to unregister", e);
 } // try
 } // unregister

 /* ----- implementation of ServiceTrackerCustomizer ----- */

 public Object addingService (ServiceReference aRef) {
 category.debug ("adding service");
 httpService = (HttpService) context.getService (aRef);
 register (httpService);
 return httpService;
 } // addingService

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 16 of 29

 public void modifiedService (ServiceReference aRef, Object aObj) {
 category.debug ("modified service");
 httpService = (HttpService) context.getService (aRef);
 register (httpService);
 } // modifiedService

 public void removedService (ServiceReference aRef, Object aObj) {
 category.debug ("removed service");
 } // removedService

} // Activator

At some point, the tracker object invokes addingService() to inform you
about the availability of the HTTP service. Subsequently, register() is called
to register with the HTTP service the Hamlet providing the view, the servlet
providing the controller, and the resources (the coffee machine bitmap and
the cascading style sheet used to format the output). The registration of the
resources with registerResources() requires an HTTP context (httpContext).
The CoffeeMachineContext class, shown in Listing 11, provides the HTTP
context for the coffee machine resources. It implements the three methods of the
HttpContext interface: handleSecurity(), getMimeType(), and getResource().
When a particular resource is requested (for example, the coffee machine bitmap
with), the getResource() method of
the CoffeeMachineContext class returns a URL to the resource in the bundle (for
example, bundle://36/Resources/coffee_machine.jpg).

Listing 11. CoffeeMachine context
package com.ibm.zurich.CoffeeMachineBundle;

import java.net.*;
import javax.servlet.http.*;
import org.osgi.framework.*;
import org.osgi.service.http.*;

public class CoffeeMachineContext implements HttpContext {

 private BundleContext context;

 public CoffeeMachineContext (BundleContext context) {
 this.context = context;
 } // CoffeeMachineContext

 public boolean handleSecurity (HttpServletRequest req, HttpServletResponse res) {
 return true;
 } // handleSecurity

 public String getMimeType (String name) {
 return null;
 } // getMimeType

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 17 of 29

 public URL getResource (String path) {
 return context.getBundle().getResource (path);
 } // getResource

} // CoffeeMachineContext

The Web-based user interface of the coffee machine can now be accessed with a
browser at the URL http://localhost:8080/CoffeeMachine, as Figure 8 shows.

Figure 8. CoffeeMachine bundle, providing a Web-based front-end for a coffee
machine

The tracker object will call the removedService() method, followed by the
addingService() method when the HTTP service is replaced. As was the case
with the HelloServlet bundle, it is necessary to re-register the controller servlet, the

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 18 of 29

resources, and the Hamlet that provides the view. Re-registration is also required
when modifiedService() is called -- when the HTTP is modified, in other words.

The Activator's stop() method is invoked when the CoffeeMachine bundle is
stopped. Here you unregister the Hamlet, servlet, and resources and clean up the
model (M) with CoffeeMachineTimer.getTimer().stop().

So far, not much has been different from the previous HelloServlet example.
However, the CoffeeMachine bundle does not use println() statements in the
doGet() method of a servlet to produce its output. Instead, it uses a Hamlet that
enables the separation of HTML and Java code.

The doGet() method is invoked when the coffee machine is accessed through
the network. You retrieve the current timer setting from the data model with
model.getTiming() and create an instance (handler) of CoffeeMachineHandler
(which is a private class of CoffeeMachine that extends HamletHandler). Next,
the serveDoc (req, res, template, handler) method is called. It executes a
compiled template (referenced by template) to produce the coffee machine's
user interface (the HTML code) and calls the handler's getElementAttributes()
method to add the current timer setting (the CHECKED and SELECTED attributes)
with Helpers.getAttributes(). The Java bytecode for the compiled template
(CoffeeMachineTemplate.class) is generated at design-time from the XHTML
template (CoffeeMachineTemplate.html) by the template compiler using Ant.
You load this code during the creation of the CoffeeMachine hamlet with
Class.forName("CoffeeMachineTemplate.class") in the init() method. For detailed
information on how getElementAttributes() works, see Resources.

Listing 12. The CoffeeMachine hamlet provides the coffee machine's view
package com.ibm.zurich.CoffeeMachineBundle;

import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.hamlet.*;
import com.ibm.hamlet.helpers.*;
import org.apache.log4j.*;
import org.xml.sax.*;

public class CoffeeMachine extends Hamlet {

 // log4j
 private static Category category =
 Category.getInstance (CoffeeMachine.class.getName ());

 private Class template;

 private static class CoffeeMachineHandler extends HamletHandler {

 private CoffeeMachineTiming timing;

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 19 of 29

 public CoffeeMachineHandler (Hamlet hamlet, CoffeeMachineTiming aTiming) {
 super (hamlet);
 timing = aTiming;
 } // CoffeeMachineHandler

 public Attributes getElementAttributes (String id, String name, Attributes atts)
 throws Exception {

 if (id.equals ("Checkbox")) {
 if (timing.isSet ())
 atts = Helpers.getAttributes (atts, "CHECKED", "Checked");
 } else if (id.equals ("StartHour")) {
 String hour = atts.getValue ("Hour");
 if (hour.equals ("" + timing.getHour ()))
 atts = Helpers.getAttributes (atts, "SELECTED", "Selected");
 } else if (id.equals ("StartMinute")) {
 String minute = atts.getValue ("Minute");
 if (minute.equals ("" + timing.getMinute ()))
 atts = Helpers.getAttributes (atts, "SELECTED", "Selected");
 } // if
 return atts;

 } // getElementAttributes

 } // CoffeeMachineHandler

 public void init () throws ServletException {
 try {
 category.debug ("init");
 template = Class.forName ("CoffeeMachineTemplate");
 } catch (Exception e) {
 category.error ("", e);
 throw new ServletException (e);
 } // try
 } // init

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {

 try {
 category.debug ("doGet");
 CoffeeMachineTimer model = CoffeeMachineTimer.getTimer ();
 CoffeeMachineTiming timing = model.getTiming();
 HamletHandler handler = new CoffeeMachineHandler (this, timing);
 serveDoc (req, res, template, handler);
 } catch (Exception e) {
 category.error ("", e);
 throw new ServletException (e);
 } // try

 } // doGet

 public void destroy () {
 category.debug ("destroy");
 } // destroy

} // CoffeeMachine

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 20 of 29

Listing 13 shows the coffee machine's HTML code (CoffeeMachineTemplate.html)
that the template compiler converts into Java bytecode
(CoffeeMachineTemplate.class) at design-time. For detailed information on how
template compilation works, see Resources.

Listing 13. CoffeeMachineTemplate.html

<!DOCTYPE CoffeeMachine [<!ENTITY nbsp " ">]>
<HTML>
 <HEAD>
 <TITLE>Coffee Machine</TITLE>
 <LINK REL="stylesheet" TYPE="text/css" HREF="Include/View.css" MEDIA="all" />
 </HEAD>
 <BODY>

 <FORM NAME="ui" ACTION="CoffeeMachineController" METHOD="POST">

 <TABLE BORDER="0">
 <TR>

 <TD>
 <TABLE CLASS="report" CELLPADDING="10" CELLSPACING="1">

 <TR CLASS="odd">
 <TH CLASS="report" COLSPAN="2">Coffee Machine</TH>
 </TR>

 <TR CLASS="even">
 <TD CLASS="report"><INPUT ID="Checkbox" CLASS="Checkbox"
 TYPE="Checkbox" NAME="Checkbox" onClick="submit();" />
 </TD>
 <TD>
 <SELECT CLASS="report" size="1" NAME="Hour" onChange="submit();">
 <OPTION ID="StartHour" Hour="0">00</OPTION>
 <OPTION ID="StartHour" Hour="1">01</OPTION>
 <OPTION ID="StartHour" Hour="2">02</OPTION>
 <OPTION ID="StartHour" Hour="3">03</OPTION>
 <OPTION ID="StartHour" Hour="4">04</OPTION>
 <OPTION ID="StartHour" Hour="5">05</OPTION>
 <OPTION ID="StartHour" Hour="6">06</OPTION>
 <OPTION ID="StartHour" Hour="7">07</OPTION>
 <OPTION ID="StartHour" Hour="8">08</OPTION>
 <OPTION ID="StartHour" Hour="9">09</OPTION>
 <OPTION ID="StartHour" Hour="10">10</OPTION>
 <OPTION ID="StartHour" Hour="11">11</OPTION>
 <OPTION ID="StartHour" Hour="12">12</OPTION>
 <OPTION ID="StartHour" Hour="13">13</OPTION>
 <OPTION ID="StartHour" Hour="14">14</OPTION>
 <OPTION ID="StartHour" Hour="15">15</OPTION>
 <OPTION ID="StartHour" Hour="16">16</OPTION>
 <OPTION ID="StartHour" Hour="17">17</OPTION>
 <OPTION ID="StartHour" Hour="18">18</OPTION>
 <OPTION ID="StartHour" Hour="19">19</OPTION>
 <OPTION ID="StartHour" Hour="20">20</OPTION>
 <OPTION ID="StartHour" Hour="21">21</OPTION>
 <OPTION ID="StartHour" Hour="22">22</OPTION>
 <OPTION ID="StartHour" Hour="23">23</OPTION>
 </SELECT>
 <SELECT CLASS="report" size="1" NAME="Minute" onChange="submit();">
 <OPTION ID="StartMinute" Minute="0">00</OPTION>
 <OPTION ID="StartMinute" Minute="5">05</OPTION>
 <OPTION ID="StartMinute" Minute="10">10</OPTION>
 <OPTION ID="StartMinute" Minute="15">15</OPTION>
 <OPTION ID="StartMinute" Minute="20">20</OPTION>
 <OPTION ID="StartMinute" Minute="25">25</OPTION>

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 21 of 29

 <OPTION ID="StartMinute" Minute="30">30</OPTION>
 <OPTION ID="StartMinute" Minute="35">35</OPTION>
 <OPTION ID="StartMinute" Minute="40">40</OPTION>
 <OPTION ID="StartMinute" Minute="45">45</OPTION>
 <OPTION ID="StartMinute" Minute="50">50</OPTION>
 <OPTION ID="StartMinute" Minute="55">55</OPTION>
 </SELECT>
 </TD>
 </TR>

 </TABLE>
 </TD>

 <TD>

 </TD>

 </TR>
 </TABLE>

 <DIV CLASS="link">
 Powered by Hamlets
 </DIV>

 </FORM>
 </BODY>
</HTML>

Now assume that the user wants to set the timer of the coffee machine. As
you can see in Listing 14, the user interface does not need to offer a submit
button, because all changes to the checkbox to activate or deactivate the
timer and the drop-down lists for selecting a timer setting are immediately
submitted to the CoffeeMachineController servlet (<FORM NAME="ui"
ACTION="CoffeeMachineController" METHOD="POST">) with the help of some
JavaScript code (onClick="submit();") in the <INPUT> tag and the two <SELECT>
tags.

Listing 14. CoffeeMachineController servlet providing the coffee machine's
controller (C)
package com.ibm.zurich.CoffeeMachineBundle;

import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.log4j.*;

public class CoffeeMachineController extends HttpServlet {

 // log4j
 private static Category category =
 Category.getInstance (CoffeeMachineController.class.getName ());

 public void init () {
 category.debug ("init");
 } // init

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 22 of 29

 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {

 try {
 category.debug ("doPost");
 String set = req.getParameter ("Checkbox");
 String hour = req.getParameter ("Hour");
 String minute = req.getParameter ("Minute");
 CoffeeMachineTimer model = CoffeeMachineTimer.getTimer ();
 CoffeeMachineTiming timing = new CoffeeMachineTiming ();
 timing.set ("on".equals (set));
 timing.setHour (hour);
 timing.setMinute (minute);
 model.setTiming (timing);
 res.sendRedirect ("CoffeeMachine");
 } catch (Exception e) {
 category.error ("", e);
 throw new ServletException (e);
 } // try

 } // doPost

 public void destroy () {
 category.debug ("destroy");
 } // destroy

} // CoffeeMachineController

The CoffeeMachineController's doPost() method is invoked whenever a timer
setting change occurs. After retrieving the submitted parameter values with
getParameter(), you create an instance (timing) of CoffeeMachineTiming
and use its setter methods to set hour, minute, and timer status (on or off).
Next, you call setTiming() on the coffee machine model (M) -- obtained with
CoffeeMachineTimer.getTimer() -- to set the new timer setting. And finally, you
redirect to the CoffeeMachine hamlet to refresh the view. Thus, the logic to process
the input (the servlet) and the logic to generate the view (the Hamlet) are nicely
separated (as described by the MVC design pattern).

The CoffeeMachineTiming class is straightforward and shown in Listing 15. It
represents coffee machine timer settings.

Listing 15. CoffeeMachineTiming class representing timer settings
package com.ibm.zurich.CoffeeMachineBundle;

public class CoffeeMachineTiming {

 private boolean set;
 private int hour;
 private int minute;

 public CoffeeMachineTiming () {
 set = false;
 hour = 12;
 minute = 0;
 } // CoffeeMachineTiming

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 23 of 29

 public CoffeeMachineTiming (CoffeeMachineTiming aTimingDesc) {
 set = aTimingDesc.set;
 hour = aTimingDesc.hour;
 minute = aTimingDesc.minute;
 } // CoffeeMachineTiming

 public void set (boolean b) {
 set = b;
 } // set

 public boolean isSet () {
 return set;
 } // isSet

 public void setHour (String aHour) {
 hour = Integer.parseInt (aHour);
 } // setHour

 public int getHour () {
 return hour;
 } // getHour

 public void setMinute (String aMinute) {
 minute = Integer.parseInt (aMinute);
 } // setMinute

 public int getMinute () {
 return minute;
 } // getMinute

 public String toString () {
 StringBuffer buf = new StringBuffer ();
 buf.append ("Set: ");
 buf.append (set);
 buf.append (", ");
 buf.append ("Hour: ");
 buf.append (hour);
 buf.append (", ");
 buf.append ("Minute: ");
 buf.append (minute);
 return buf.toString ();
 } // toString

 public static void main (String args[]) {
 CoffeeMachineTiming timing = new CoffeeMachineTiming ();
 System.out.println (timing.toString ());
 } // main

} // CoffeeMachineTiming

The CoffeeMachineTimer class, illustrated in Listing 16, provides a mechanism
to trigger the coffee brewing process. It implements the run() method of the
Runnable interface and uses a thread to check if it is time to start making coffee.
Currently, once the timer has counted down, the program just prints the message

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 24 of 29

"Brewing coffee..." However, you could easily replace the println() statement with
functionality that interacts with a real coffee machine (I am looking forward to hearing
from anyone who'd like to try this!). Only a single instance of CoffeeMachineTimer
can be created (since we are using the singleton pattern) with the static method
getTimer(). The start() and stop() methods are used to start and stop the timer,
and getTiming() and setTiming() allow you to get the current timer setting and
to set a new timer setting. Note that synchronization is required to avoid race
conditions.

Listing 16. CoffeeMachineTimer class provides the coffee machine's model (M)

package com.ibm.zurich.CoffeeMachineBundle;

import java.util.*;
import org.apache.log4j.*;

class CoffeeMachineTimer implements Runnable {

 // log4j
 private static Category category =
 Category.getInstance (CoffeeMachineTimer.class.getName ());

 private static CoffeeMachineTimer timer = null;

 private boolean abort;
 private Thread t;
 private CoffeeMachineTiming timing;

 CoffeeMachineTimer () {
 t = null;
 abort = false;
 timing = new CoffeeMachineTiming ();
 } // CoffeeMachineTimer

 public synchronized void start () {
 if (t == null) {
 category.debug ("Starting timer...");
 t = new Thread (this);
 t.start ();
 } // if
 } // start

 public synchronized void stop () {
 if (t != null) {
 category.debug ("Stopping timer...");
 abort = true;
 try {
 t.join ();
 } catch (Exception e) {
 category.error ("", e);
 } // try
 } // if
 } // stop

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 25 of 29

 public synchronized CoffeeMachineTiming getTiming () {
 return new CoffeeMachineTiming (timing);
 } // getTiming

 public synchronized void setTiming (CoffeeMachineTiming aTiming) {
 timing = new CoffeeMachineTiming (aTiming);
 System.out.println (timing.toString ());
 } // setTiming

 public void run () {
 category.debug ("Running...");
 while (!abort) {
 try {

 CoffeeMachineTiming timing = getTiming ();
 if (timing.isSet ()) {

 long curTime = System.currentTimeMillis ();
 Calendar cal = new GregorianCalendar ();
 cal.setTimeInMillis (curTime);
 cal.set (Calendar.HOUR_OF_DAY, timing.getHour ());
 cal.set (Calendar.MINUTE, timing.getMinute ());
 cal.set (Calendar.SECOND, 0);
 long setTime = cal.getTimeInMillis ();

 Date d1 = new Date (curTime);
 Date d2 = new Date (setTime);
 System.out.println (d1.toString () + ", " + d2.toString ());

 if ((curTime / 1000L) == (setTime / 1000L))
 System.out.println ("Brewing coffee ... ");

 } // if

 Thread.sleep (1000);

 } catch (Exception e) {
 category.error ("", e);
 } // try
 } // while
 category.debug ("Finished.");
 } // run

 public static synchronized CoffeeMachineTimer getTimer () {
 if (timer == null)
 timer = new CoffeeMachineTimer ();
 return timer;
 } // getTimer

} // CoffeeMachineTimer

The bundle's manifest is shown in Listing 17. It names all necessary import
packages.

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 26 of 29

Listing 17. Manifest for the CoffeeMachine bundle
Manifest-Version: 1.0
Bundle-Name: Coffee Machine Bundle
Bundle-SymbolicName: coffeemachinebundle
Bundle-Version: 1.0.0
Bundle-Description: This bundles provides a network-enabled coffee machine.
Bundle-Vendor: Rene Pawlitzek
Bundle-Activator: com.ibm.zurich.CoffeeMachineBundle.Activator
Bundle-Category: example
Import-Package: org.osgi.framework, org.osgi.util.tracker, org.osgi.service.http,
javax.servlet, javax.servlet.http, com.ibm.hamlet,
com.ibm.hamlet.helpers, org.apache.log4j, org.xml.sax, org.xml.sax.helpers

And finally, Listing 18 illustrates the Ant script to build the CoffeeMachine bundle.
It contains a task template to invoke the template compiler that converts all
*Template.html files (CoffeeMachineTemplate.html, in this case) into Java classes
(CoffeeMachineTemplate.class). Hamlets generate user interfaces by executing
these Java classes. Note that the *Template.html files do not need to be included
in the bundle. They are only required for template compilation. The application's
resources (all gif, jpg, and css files) are part of the bundle and located in the
Resources subdirectory.

Listing 18. Ant script to build the CoffeeMachine bundle
<?xml version="1.0"?>

<project name="CoffeeMachineBundle" default="all">

 <target name="all" depends="init, compile, template, copy, jar" />

 <target name="init">
 <mkdir dir="./classes" />
 <mkdir dir="./classes/Resources" />
 <mkdir dir="./build" />
 </target>

 <target name="compile">
 <javac destdir="./classes" srcdir="." />
 </target>

 <target name="template">
 <taskdef name="hamletc" classname="com.ibm.hamlet.ant.CompileTask" />
 <hamletc destdir="./classes">
 <fileset dir="./com/ibm/zurich/CoffeeMachineBundle">
 <include name="*Template.html" />
 </fileset>
 </hamletc>
 </target>

 <target name="copy">
 <copy todir="./classes">
 <fileset dir="./com/ibm/zurich/CoffeeMachineBundle">
 <include name="*.html"/>
 </fileset>
 </copy>
 <copy todir="./classes/Resources">

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 27 of 29

 <fileset dir="./com/ibm/zurich/CoffeeMachineBundle/Include">
 <include name="*.gif"/>
 <include name="*.jpg"/>
 <include name="*.css"/>
 </fileset>
 </copy>
 </target>

 <target name="jar">
 <jar basedir="./classes" jarfile ="./build/coffeemachinebundle.jar"
 includes="**/*" manifest="./meta-inf/MANIFEST.MF" />
 </target>

 <target name="clean">
 <delete dir="./classes" />
 <delete dir="./build" />
 </target>

</project>

This completes the network-enabled coffee machine example.

Conclusion

The OSGi framework is a Java technology-based service platform with remote
management capabilities. It has been successfully used in a number of areas:
home automation, the automotive industry, consumer electronics, and even desktop
applications. Hamlets are an ideal addition to the OSGi framework because they
enable the construction of Web-based applications for which the presentation layer
and logic layer (providing the dynamic content) are completely separated. After a
short introduction, this article explained step-by-step how to use Hamlets to create a
network-enabled coffee machine whose timer can be remotely set using a browser.

Acknowledgments

I thank Chris Giblin and Rainer Hauser for their valuable comments and suggestions.

developerWorks® ibm.com/developerWorks/

Embedding Hamlets Page 28 of 29

Resources
• "Introducing Hamlets," René Pawlitzek (developerWorks, March 2005): This

article presents the fundamentals of Hamlet programming and explains how to
separate content and presentation with just a smidgen of code.

• "Programming Hamlets," René Pawlitzek (developerWorks, May 2005,
updated March 2007): This tutorial illustrates various aspects of Hamlet V1.3
programming as it provides a number of practical Hamlet examples. Includes
detailed information on how getElementAttributes() works.

• "Implementing Hamlets," René Pawlitzek (developerWorks, February 2006):
This article describes the Hamlet V1.1 implementation and introduces
HamletHandlers, an additional way to provide dynamic content.

• "Compiling Hamlets," René Pawlitzek (developerWorks, June 2006): This article
describes a small addition to the Hamlet framework: a template compiler for
accelerating Hamlets.

• Hamlets home page: Check it out on alphaWorks.
• Hamlets on SourceForge: Now that this project is open source, find out how you

can contribute.
• Log4j: Download this logging package from the Apache Project.
• Hamlets and OSGi: Learn more about both at Wikipedia.
• The OSGi Alliance: Find out more about this organization, formerly known as

the Open Services Gateway initiative.
• OSGi Service Platform Specification: Get the details from OSGi.
• "About the OSGi Service Platform," Revision 4.1, November 11, 2005: Read the

technical whitepaper to learn more. Document is a PDF.
• "OSGi introductory tutorial," Peter Kriens, www.aQute.biz, 2006: A good place

to start with OSGi. Document is in Microsoft PowerPoint format.
• "OSGi tutorial: A step-by-step introduction to OSGi programming based on the

open source Knopflerfish OSGi framework," Sven Haiges, October 2004: More
information on OSGi, and Knopflerfish as well. Document is a PDF.

• Knopflerfish: The open source OSGi implementation used in this article's screen
shots.

• Apache Felix and Eclipse Equinox: Two more open source OSGi
implementations.

http://www.ibm.com/developerworks/web/library/wa-hamlets/
http://www.ibm.com/developerworks/edu/wa-dw-wa-hamletprg-i.html
http://www.ibm.com/developerworks/web/library/wa-hamlets3/
http://www.ibm.com/developerworks/web/library/wa-hamlets4/index.html
http://www.alphaworks.ibm.com/tech/hamlets
http://sourceforge.net/projects/hamlets/
http://logging.apache.org/log4j/docs/
http://en.wikipedia.org/wiki/Hamlets
http://en.wikipedia.org/wiki/OSGi
http://www.osgi.org/
http://www.osgi.org/documents/
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://www.aqute.biz/uploads/OSGi/tutorial-1.1.ppt
http://www.knopflerfish.org/tutorials/osgi_tutorial.pdf
http://www.knopflerfish.org/tutorials/osgi_tutorial.pdf
http://www.knopflerfish.org/
http://cwiki.apache.org/FELIX/index.html
http://www.eclipse.org/equinox/

ibm.com/developerWorks/ developerWorks®

Embedding Hamlets Page 29 of 29

About the author

René Pawlitzek

René Pawlitzek is a citizen of Liechtenstein and holds an engineering
degree in computer science from the Swiss Federal Institute of
Technology (ETH Zürich). René works as a research and development
engineer focusing on security information management solutions for
the Advanced Operating Environment group (formerly Global Security
Analysis Lab (GSAL)) at the IBM Zürich Research Laboratory in
Switzerland. Before coming to IBM, he worked in California for Hewlett-
Packard, WindRiver Systems, and Borland International.

© Copyright IBM Corporation 2007
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	What are Hamlets?
	What is OSGi?
	The Hello bundle
	The Monitor bundle
	The HelloServlet bundle
	The Hamlet bundle
	The Coffee Machine bundle
	Conclusion
	Acknowledgments

	Resources
	About the author

