
© Copyright IBM Corporation 2005 Trademarks
Introducing Hamlets Page 1 of 15

Introducing Hamlets
A small-footprint, servlet-based, content creation framework

Ren<eacute /> Pawlitzek (rpa@zurich.ibm.com)
Research and Development Engineer
IBM, Software Group

22 March 2005

Servlets are a key component of server-side Java™ development, but despite a number of
attractive traits, servlets do not support or enforce the separation of content and presentation.
To master that functionality, René Pawlitzek proposes Hamlets -- servlet extensions that
provide this functionality within a lightweight framework implemented with less than 500 lines of
Java source code.

Server-side Java development has increased in popularity in the last few years and servlets are a
key part of it. A servlet is a small, pluggable extension to a Web or application server that provides
its capabilities in a Java class. The servlet is loaded at runtime to expand the server's functionality.

Servlets, an ideal choice for Web development, have a number of assets -- portability, efficiency,
safety, extensibility, and flexibility. Few viable alternatives exist that can match the power and
elegance of servlets (a widespread, competing technology is Microsoft's Active Server Pages, or
ASP).

One problem, though, exists with servlets when it comes to Web development: They do not
enforce or support the separation of content and presentation. Why is this separation important? (I
offer reasons in the next section.)

This article introduces Hamlets, servlet extensions that provide this functionality within a
lightweight framework implemented with less than 500 lines of Java source code.

Mix Java and HTML in the same page?

Despite their attractive properties, out-of-the-box servlets are missing an important feature:
support for the separation of content from presentation. If servlets are exclusively used for the
development of Web-based applications, Java and HTML code inevitably ends up intermixed in
the same source file (see Listing 1).

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:rpa@zurich.ibm.com

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 2 of 15

Listing 1. "Hello World" servlet with embedded HTML code
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 res.setContentType ("text/html");
 PrintWriter out = res.getWriter ();
 out.println ("<HTML>">
 out.println ("<HEAD><TITLE>Hello World</TITLE></HEAD>");
 out.println ("<BODY>");
 out.println ("Hello World");
 out.println ("</BODY>");
 out.println ("</HTML>");
 } // doGet

} // HelloWorld

The separation of Java and HTML code is highly desirable because:

• Developers and designers can work independently of each other on the Java and the HTML
code.

• The ease of maintaining the application increases.
• The opportunity to introduce errors is smaller since a change in the HTML code does not

require retesting the Java code.

Several servlet-based frameworks have evolved to support the separation of content from
presentation (Table 1 offers a partial overview).

Table 1. A few frameworks that support the separation of content from
presentation

Framework Concept Verdict

JavaServer Pages (JSP) A JavaServer Page™ can contain both
HTML and Java code. However, placing
Java code within a JSP is considered bad
practice because content and presentation are
intermixed rather than separated.
Use JavaServer Pages primarily for
presentation logic. With the help of JavaBeans
and custom tag libraries, you can eliminate
Java code from JSPs.

JavaServer Pages enable the separation of
content from presentation, but don't enforce or
encourage it as other alternatives do.
The compiler that translates a JSP into a
background servlet introduces a first-person
penalty and a security risk.

WebMacro WebMacro is a template engine. It performs
text replacement operations inside Web page
templates. Servlets are used to push content
into templates.

WebMacro offers good separation of content
and presentation, but requires a (simplified)
scripting syntax. It is suitable for Web
applications with high functionality.

Tea Developers create applications in Java code
and install them in the framework. To create
and maintain the final appearance of dynamic
Web pages, producers write Tea templates
that call functions provided by the installed
applications.

The templates (written in the Tea language)
enforce the separation of content from
presentation, but the Tea language adds
additional complexity. Tea hides the servlet
infrastructure. Less programmer involvement is
required.

XML Compiler (XMLC) XMLC compiles HTML documents into a Java
class that contains instructions to create an
XML DOM tree representation of the document

XMLC achieves a high level of separation
between content and presentation, but DOM
trees require many resources.

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 3 of 15

in memory. The developer writes code that
manipulates the tree to add dynamic content
before it is output.

Element Construction Set (ECS) With ECS, you generate markup code with
Java objects.

ECS hides markup code in Java objects. In
many cases, it is too programmer-centric.

The initial motivation to provide an alternative framework came from the fact that none of these
frameworks seemed suitable for the development of a Web-based console to monitor intrusion-
detection events for various reasons (license, complexity, performance, security, and so on). Note
that the applicability of the newly created framework is not limited to the area of intrusion detection.

What does a new framework need?
Before creating a new framework, I compiled a list of requirements that is actually rather short.
These three basic requirements are important:

• The framework not only supports, but enforces, the complete separation of content from
presentation. Only designers work on the presentation using HTML and only developers
provide the dynamic content using Java technology.

• The framework has a simple and elegant design that does not hide the familiar underlying
servlet infrastructure.

• The framework is implemented in a lightweight manner with minimal overhead so that it is
easy to use and understand.

Meet Hamlets
With these requirements in mind, I devised a small-footprint (on the order of 500 lines of Java
source code) servlet-based, content creation framework called Hamlets. One can describe a
Hamlet as follows:

A Hamlet is a servlet extension that reads XHTML template files containing presentation using
SAX (the Simple API for XML) and dynamically adds content on the fly to those places in the
template which are marked with special tags and IDs using a small set of callback functions.

Hamlets support the separation of responsibilities in combination with other Web technologies.
Consider the following set-up for Web application development:

• Hamlets provide the code which creates the dynamic content in a Web application and can
work with Java Beans that contain the business logic for further code structuring. Developers
write Hamlets in Java code.

• XHTML template files contain mock-up pages that provide the presentation in a Web
application. In other words, they contain the basic layout of a dynamic Web page. Web
designers create the template files.

• Cascading Style Sheets (CSS) format Web pages and provide a consistent look and feel
across projects and Web pages. Web designers also create the stylesheet files.

Program Hamlets
You need these programming elements to make Hamlets work.

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 4 of 15

<REPLACE> and getElementReplacement()

The <REPLACE> tag and the getElementReplacement() callback comprise the mechanism to
create dynamic content within the Hamlet framework. After a Web designer finishes the XHTML
code of a Web page, the <REPLACE> tag (together with an ID attribute) marks all those places
within the XHTML file where the Hamlet framework will insert dynamic content during a request.
The designer does not know the actual value during the design phase and uses placeholder
values instead: <REPLACE ID="time">12:34</REPLACE>.

Once a Hamlet receives a user request, its doGet()/doPost() method is invoked. This function
passes the name of the XHTML template file to the serveDoc() method of the Hamlet framework
where the actual work is done.

public synchronized void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 // serve document
 serveDoc (req, res, "ClockTemplate.html");
 } catch (Exception e) {
 throw new ServletException (e);
 } // try
} // doGet

A SAX reader (obtained from a pool of readers) reads the content of the XHTML template file
and invokes the Hamlet's getElementReplacement() callback method when a <REPLACE> tag is
encountered. The code in the getElementReplacement() callback replaces the placeholder values
with dynamically created content based on the value of the ID attribute stored in the id parameter.

public String getElementReplacement (String id, String name, Attributes atts)
 throws SAXException {

 if (id.equals ("time")) {
 Date now = new Date ();
 String str = dateFormat.format (now);
 return str;
 } // if
 return "?";

} // getElementReplacement

For example, to implement a simple digital clock using a Hamlet, see the XHTML template in
Listing 2 and the Hamlet Java code in Listing 3:

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 5 of 15

Listing 2. XHTML template file for a simple digital clock
<HTML>
 <HEAD>
 <META HTTP-EQUIV="Refresh" CONTENT="10" />
 <TITLE>Clock</TITLE>
 <LINK REL="stylesheet" TYPE="text/css" HREF="Status.css" />
 </HEAD>
 <BODY>
 <TABLE CLASS="container">
 <TR>
 <TD HEIGHT="30">
 <P CLASS="time">
 <REPLACE ID="time">12:34</REPLACE>
 </P>
 </TD>
 </TR>
 </TABLE>
 </BODY>
</HTML>

Listing 3. Hamlet Java code for a simple digital clock
package com.ibm.webzec.apps.server;

import java.io.*;
import java.util.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.hamlet.*;
import com.ibm.webzec.libs.util.*;
import org.xml.sax.*;

public class Clock extends Hamlet {

 private SimpleDateFormat dateFormat;

 public void init () throws ServletException {
 try {
 // get properties
 ContextProperties props = ContextProperties.getProperties (this);
 // get formats
 String format = props.getStringProperty ("ShortTimeFormat");
 dateFormat = new SimpleDateFormat (format);
 String timeZone = props.getStringProperty ("TimeZone");
 dateFormat.setTimeZone (Utilities.getTimeZone (timeZone));
 } catch (Exception e) {
 throw new ServletException (e);
 } // try
 } // init

 public synchronized void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 // serve document
 serveDoc (req, res, "ClockTemplate.html");
 } catch (Exception e) {
 throw new ServletException (e);
 } // try
 } // doGet

 public String getElementReplacement (String id, String name, Attributes atts)
 throws SAXException {
 if (id.equals ("time")) {
 Date now = new Date ();
 String str = dateFormat.format (now);

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 6 of 15

 return str;
 } // if
 return "?";
 } // getElementReplacement

} // Clock

<REPEAT> and getElementRepeatCount()
With the <REPEAT> tag and the getElementRepeatCount() callback, you can repeat sections in
an XHTML template file several times. This functionality is useful to create the rows of a table, the
selections in a drop-down list, conditional includes, or other repeated items. A Web designer adds
the <REPEAT> tag (together with an ID attribute) to those places within the XHTML file that are
repeated.

<REPEAT ID="rows">
 <TD><P CLASS="row">
 <REPLACE ID="Reviewed">Y</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="Reception">05/24/04 12:47:24</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="Generation">05/24/04 12:47:16</REPLACE> </P></TD>
 ...
</REPEAT>

As I mentioned before, once the Hamlet receives the user request, its doGet()/doPost() method
is invoked. The method passes the name of the XHTML template file to the serveDoc() method
of the Hamlet framework where its content is read by a SAX reader. If the reader comes across
a <REPEAT> tag, it records all following XHTML content. When the reader encounters the
corresponding </REPEAT> tag, it stops the recording and invokes the getElementRepeatCount()
callback. The code in the getElementRepeatCount() callback returns the number of repeats N with
the help of the ID attribute stored in the id parameter. Next, the recorded content plays back N
times where N equals the number of repeats. You can nest <REPEAT> tags.

public int getElementRepeatCount (String id, String name, Attributes atts)
 throws SAXException {

 if (id.equals ("rows"))
 return events.size ();
 return 0;

} // getElementRepeatCount

For example, to implement a table containing intrusion-detection events using a Hamlet, see the
XHTML template in Listing 4 and the Hamlet Java code in Listing 5:

Listing 4. XHTML template file for a table containing intrusion-detection events
<!DOCTYPE WebZEC [<!ENTITY nbsp "Â ">]>
<HTML>
 <HEAD>
 <TITLE>ListView</TITLE>
 <LINK REL="stylesheet" TYPE="text/css" HREF="View.css" />
 </HEAD>
 <BODY>
 <TABLE CLASS="list" CELLSPACING="0" CELLPADDING="0">
 <TR>

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 7 of 15

 <TD></TD>
 <TD><P CLASS="header">Received</P></TD>
 <TD><P CLASS="header">Generated</P></TD>
 <TD><P CLASS="header">Signature</P></TD>
 <TD><P CLASS="header">Count</P></TD>
 <TD><P CLASS="header">Source IP</P></TD>
 <TD><P CLASS="header">SP</P></TD>
 <TD><P CLASS="header">Dest. IP</P></TD>
 <TD><P CLASS="header">DP</P></TD>
 <TD><P CLASS="header">Customer</P></TD>
 <TD><P CLASS="header">Sensor</P></TD>
 </TR>
 <REPEAT ID="rows">
 <TR ID="Color" BGCOLOR="#FFFFFF">
 <TD><P CLASS="row">
 <REPLACE ID="Reviewed">Y</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="Reception">05/24/04 12:47:24</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="Generation">05/24/04 12:47:16</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <A ID="Link"
 HREF="EventView.html?Index={0}" CLASS="dynamic TARGET="APPLICATION">
 <REPLACE ID="Signature">
 RPC - mountd UDP unmount request: Attempted Information Leak
 </REPLACE>
 </P>
 </TD>
 <TD><P CLASS="row">
 <REPLACE ID="Count">10</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="SrcIP">127.0.0.1</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="SrcPort">80</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="DstIP">129.173.21.68</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="DstPort">44</REPLACE>3 </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="Customer">Pawlitzek AG</REPLACE> </P></TD>
 <TD><P CLASS="row">
 <REPLACE ID="Sensor">S1</REPLACE> </P></TD>
 </TR>
 </REPEAT>
 </TABLE>
 </BODY>
</HTML>

Listing 5. Hamlet Java code for a table containing intrusion-detection events
package com.ibm.webzec.apps.server;

import java.awt.*;
import java.io.*;
import java.util.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.hamlet.*;
import com.ibm.webzec.libs.db.*;
import com.ibm.webzec.libs.util.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ListViewList extends Hamlet {

 private int index;

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 8 of 15

 private Vector events;
 private EventDesc event;
 private SimpleDateFormat dateFormat;

 public void init () throws ServletException {
 try {
 // get properties
 ContextProperties props = ContextProperties.getProperties (this);
 // get formats
 String format = props.getStringProperty ("DateFormat");
 dateFormat = new SimpleDateFormat (format);
 String timeZone = props.getStringProperty ("TimeZone");
 dateFormat.setTimeZone (Utilities.getTimeZone (timeZone));
 } catch (Exception e) {
 throw new ServletException (e);
 } // try
 } // init

 public synchronized void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 HttpSession session = req.getSession (false);
 if (session != null) {
 index = 0;
 events = (Vector) session.getAttribute (WebApp.events);
 // serve document
 serveDoc (req, res, "ListViewListTemplate.html");
 } else {
 res.sendRedirect (res.encodeURL (req.getContextPath () + "/LoginHere.html"));
 } // if
 } catch (Exception e) {
 throw new ServletException (e);
 } // try
 } // doGet

 public int getElementRepeatCount (String id, String name, Attributes atts)
 throws SAXException {
 if (id.equals ("rows"))
 return events.size ();
 return 0;
 } // getElementRepeatCount

 public String getElementReplacement (String id, String name, Attributes atts)
 throws SAXException {
 if (id.equals ("Reviewed")) {
 return event.isReviewed () ? "Y" : "-";
 } else if (id.equals ("Reception")) {
 return dateFormat.format (event.getReceptionDate ());
 } else if (id.equals ("Generation")) {
 return dateFormat.format (event.getGenerationDate ());
 } else if (id.equals ("Signature")) {
 return event.getSignature ();
 } else if (id.equals ("Count")) {
 return "" + event.getEventCount ();
 } else if (id.equals ("SrcIP")) {
 return event.getSrcIP ();
 } else if (id.equals ("SrcPort")) {
 return "" + event.getSrcPort ();
 } else if (id.equals ("DstIP")) {
 return event.getDstIP ();
 } else if (id.equals ("DstPort")) {
 return "" + event.getDstPort ();
 } else if (id.equals ("Customer")) {
 return event.getCustomerName ();
 } else if (id.equals ("Sensor")) {
 return event.getSensorName ();
 } // if

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 9 of 15

 return "?";
 } // getElementReplacement

 public Attributes getElementAttributes (String id, String name, Attributes atts)
 throws SAXException {
 if (id.equals ("Color")) {
 // get the Event descriptor
 event = (EventDesc) events.elementAt (index);
 Color color = event.getColor ();
 int rgb = color.getRGB ();
 String col = Integer.toHexString (rgb);
 AttributesImpl atts2 = new AttributesImpl (atts);
 atts2.setValue (atts2.getIndex ("BGCOLOR"), "#" + col.substring (2));
 atts = atts2;
 } else if (id.equals ("Link")) {
 String format = atts.getValue ("HREF");
 String tmp = "" + index;
 Object[] arg = { tmp };
 tmp = MessageFormat.format (format, arg);
 AttributesImpl atts2 = new AttributesImpl (atts);
 atts2.setValue (atts2.getIndex ("HREF"), tmp);
 atts = atts2;
 // increment index
 index++;
 } // if
 return atts;
 } // getElementAttributes

} // ListViewList

getElementAttributes()

The getElementAttributes() callback is the technique to add, remove, or change the attributes
of elements in the XHTML code. Mark the elements that must have their attributes processed
with an ID attribute. During the parsing of the XHTML template file, the SAX reader calls the
getElementAttributes() method for each element with an ID attribute. The element's id attribute
selects the appropriate processing.

In the previous example, the getElementAttributes() callback colors each table row according to
the severity of an event. That is, fatal and critical events display in red, warning events display in
yellow, and harmless events display in green.

if (id.equals ("Color")) {
 // get the Event descriptor
 event = (EventDesc) events.elementAt (index);
 Color color = event.getColor ();
 int rgb = color.getRGB ();
 String col = Integer.toHexString (rgb);
 AttributesImpl atts2 = new AttributesImpl (atts);
 atts2.setValue (atts2.getIndex ("BGCOLOR"), "#" + col.substring (2));
 atts = atts2;
} // if

To create a link for each row, use the getElementAttributes() callback as well. The XHTML file
contains a template for the link (HREF="EventView.html?Index={0}). The actual value of the event
index fills the template.

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 10 of 15

if (id.equals ("Link")) {
 String format = atts.getValue ("HREF");
 String tmp = "" + index;
 Object[] arg = { tmp };
 tmp = MessageFormat.format (format, arg);
 AttributesImpl atts2 = new AttributesImpl (atts);
 atts2.setValue (atts2.getIndex ("HREF"), tmp);
 atts = atts2;
 // increment index
 index++;
} // if

<INCLUDE> tag

To insert content from another source into the XHTML code, use the <INCLUDE> tag. With
it, you can create headers, footers, or sections to reuse on multiple pages (such as copyright
statements).

<HTML>
 <HEAD>
 <TITLE>Welcome to WebZEC</TITLE>
 <LINK REL="stylesheet" TYPE="text/css" HREF="View.css" />
 </HEAD>
 <BODY>
 <P CLASS="title">
 Welcome to WebZEC!
 </P>
 ...
 <INCLUDE ID="Copyright" SRC="Copyright.html" />
 </BODY>
</HTML>

To indicate the source to include at runtime, you can also use the getElementAttributes()
callback.

public Attributes getElementAttributes (String id, String name, Attributes atts)
 throws SAXException {
 if (id.equals ("Copyright")) {
 AttributesImpl atts2 = new AttributesImpl (atts);
 atts2.setValue (atts2.getIndex ("SRC"), "Copyleft.html");
 atts = atts2;
 } // if
 return atts;
} // getElementAttributes

You've now seen the full functionality that the Hamlet framework offers.

Develop Hamlet-based Web apps

To develop a Hamlet-based Web application, follow this simple process:

1. In a (X)HTML editor, a Web designer creates XHTML template files that contain the
presentation of a Web application. The designer includes placeholder values (dummy
values) for those places that are replaced by dynamic content when the pages are accessed
during runtime. In addition, the Web designer writes Cascading Style Sheets (CSS) to store
formatting instructions which provide a consistent look and feel for all Web pages.

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 11 of 15

2. Next, mark all sections within the XHTML template file that you want dynamically created or
repeated with <REPLACE> and <REPEAT> tags together with ID attributes. Furthermore, add
an ID attribute to elements whose attributes you want to process. Note that the ID attribute is
the only link between content and presentation; it separates the two completely.

3. The Java developer implements the three callback methods -- getElementReplacement(),
getElementRepeatCount(), and getElementAttributes() -- in a Hamlet to provide the
dynamic content. The ID attribute controls the creation of dynamic content in the callback
functions.

4. Finally, the developer compiles the Java code, jars the class files and XHTML files, and
deploys the Web application.

Intentionally, this procedure is similar to the well-known classic Windows GUI development.
Many developers are familiar with this software-creation method that dominated the Windows
application-development process before Rapid Application Development (RAD) became popular:

1. In a dialog editor, a GUI designer creates resource files (.rc) that contain the controls of a
dialog.

2. She replaces all numerical control IDs created by the dialog editor with C/C++ preprocessor
names:
#define ID_ABOUT_DIALOG_OK 10000
#define ID_ABOUT_DIALOG_CANCEL 10001
#define ID_ABOUT_DIALOG_HELP 10002

3. The C/C++ developer uses the preprocessor names in the code to access the controls in
the dialog. In the following example, GetDlgItem() returns the handle to the OK button in the
dialog. The handle is then used in setWindowText() to set the control's text property.
setWindowText (GetDlgItem (hwnd, ID_ABOUT_DIALOG_OK), buffer);

4. In a last step, the developer compiles the C/C++ code and the resource files (.rc), links them
together to form an .exe file, and installs the application.

Developers who are familiar with the classic Windows GUI development process will immediately
be able to understand and use the Hamlet framework. Both environments achieve complete
separation of content and presentation by using IDs.

Traditional versus rapid application development

Like most other servlet-based content creation frameworks, Hamlets are practical for traditional,
Web-based application development. Rapid Application Development (RAD) became popular with
the introduction of Visual Basic and Borland Delphi. These IDE tools allow the quick development
of standalone applications with integrated GUI builders. For the development of Web-based
applications, such tools are not so widespread yet.

Table 2. What appdev form is right?

Traditional application development Rapid application development

Web-based application development • Most servlet-based content creation
frameworks

• Hamlets

• Web forms
• JavaServer Faces (JSF)

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 12 of 15

Standalone application development • Classic Windows
• OS/2 Presentation Manager

• Windows Forms (Visual Basic)
• Borland Delphi, C++Builder
• Various other RAD tools

Implement Hamlets
Hamlets form a lightweight, servlet-based content creation framework that enforces the complete
separation of content and presentation. The implementation consists of two (public) Java classes
with less than 500 lines of Java source code (see Figure 1).

Figure 1. UML diagram showing the Hamlet class hierarchy

The SAX library does most of the work (the XHTML parsing). The rest of the framework consists of
these parts:

• The ReaderPool class provides a mechanism to store SAX readers between requests. Reuse
of the readers increases the performance of the framework. The implementation is 66 lines
long (including a commented header with 17 lines).

• The Hamlet class (an extension of HttpServlet) includes the logic to set up the SAX reader, to
record and play back XHTML contents, and to invoke the callback functions. It contains 388
lines of code (including a commented header with 23 lines).

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 13 of 15

I might have implemented the Hamlet framework in various other ways; the implementation used in
this article represents a keep-it-simple approach.

Summary

Servlets are a key component of server-side Java development, offering such benefits as
portability, efficiency, safety, extensibility, and flexibility. Unfortunately, servlets do not support or
enforce the complete separation of content from presentation. Of the many frameworks devised
to provide this support, none were suitable for a Web-based console project due to license,
complexity, performance, and security.

The lightweight Hamlets -- they contain just two Java classes with less then 500 lines of Java
source code -- are the answer for a small-footprint, servlet-based content creation framework. The
Hamlet framework offers the complete separation of content and presentation, doesn't hide the
familiar underlying servlet infrastructure, and is easy to use and understand.

The development of Hamlet-based Web application is similar to the development of traditional
standalone applications in the classic Windows environment, so Windows programmers can start
immediately and produce results quickly.

developerWorks® ibm.com/developerWorks/

Introducing Hamlets Page 14 of 15

Resources

• Get an overview of Java servlets in The Java Servlet API White Paper.
• In A Description of the Model-View-Controller User Interface Paradigm in the Smalltalk-80

System, explore MVC programming, the application of a three-way factoring with which
objects of different classes take over the operations related to the application domain, the
display of the application's state, and the user interaction with the model and the view.

• Discover 23 patterns that are an essential resource for anyone developing reusable software
designs in Design Patterns: Elements of Reusable Object-Oriented Software.

• Check out this White Paper JavaServer Pages Technology for an overview of the JSP
technology.

• Get the details on tools and products for building dynamic, Web-based applications in
JavaServer Pages White Paper.

• Investigate how to develop servlets in the JavaServer Pages Servlet Developer White Paper.
• Compare CGI, mod_perl, and PHP with the Java Servlet and JSP for creating dynamic

content in JavaServer Pages Comparing Methods for Server-Side Dynamic Content White
Paper.

• Look at WebMacro, a Java open source template language that can be an alternative to JSP.
• Visit the Enhydra XMLC Project for presentation technology that delivers strict separation of

markup and logic in a true object view of dynamic presentations.
• Try the Element Construction Set, a Java API for generating elements for various markup

languages.
• Check out SAX, the Simple API for XML.
• Decide which scripting language is for you in Server-side scripting languages

(developerWorks, April 2001).
• Take this hands-on tutorial to better understand Java servlets, Introduction to Java Servlet

technology (developerWorks, December 2004).
• In Using HttpServlet init method, read up on the use of the HttpServlet init method

(developerWorks, August 2001).
• Browse for books on these and other technical topics.
• Visit the developerWorks Web Architecture zone for hundreds of articles and tutorials about

various Web-based solutions.
• Get involved in the developerWorks community -- participate in developerWorks blogs.

http://java.sun.com/products/servlet/whitepaper.html
http://www.ccmrc.ucsb.edu/~stp/PostScript/mvc.pdf
http://www.ccmrc.ucsb.edu/~stp/PostScript/mvc.pdf
http://www.aw-bc.com/catalog/academic/product/0,1144,0201634988,00.html
http://java.sun.com/products/jsp/whitepaper.html
http://java.sun.com/products/jsp/jspguide-wp.html
http://java.sun.com/products/jsp/jsp-developerwp.html
http://java.sun.com/products/jsp/jspservlet.html
http://java.sun.com/products/jsp/jspservlet.html
http://www.webmacro.org
http://xmlc.objectweb.org/
http://jakarta.apache.org/ecs/
http://www.saxproject.org/
http://www.ibm.com/developerworks/web/library/wa-sssl.html
http://www.ibm.com/developerworks/edu/j-dw-java-intserv-i.html
http://www.ibm.com/developerworks/edu/j-dw-java-intserv-i.html
http://www.ibm.com/developerworks/websphere/library/bestpractices/using_httpservlet_method.html
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/blogs/

ibm.com/developerWorks/ developerWorks®

Introducing Hamlets Page 15 of 15

About the author

Ren<eacute /> Pawlitzek

René Pawlitzek is a citizen of Liechtenstein and holds an engineering degree in
Computer Science from the Swiss Federal Institute of Technology (ETH Zürich).
René works as a Research and Development Engineer on Security Information
Management (SIM) solutions for the GSAL at the IBM Zurich Research Laboratory
in Switzerland. Before coming to IBM, he worked in California for Hewlett-Packard,
WindRiver Systems, and Borland International.

© Copyright IBM Corporation 2005
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Mix Java and HTML in the same page?
	What does a new framework need?
	Meet Hamlets
	Program Hamlets
	<REPLACE> and getElementReplacement()
	<REPEAT> and getElementRepeatCount()
	getElementAttributes()
	<INCLUDE> tag

	Develop Hamlet-based Web apps
	Traditional versus rapid application development
	Implement Hamlets
	Summary
	Resources
	About the author
	Trademarks

