

RZ 3747 (# 99757) 08/10/2009
Computer Science 44 pages

Research Report

Starting Hamlets

René Pawlitzek

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Starting Hamlets –

How to write your first web-based application in Java

by
René Pawlitzek

IBM Research - Zurich
rpa@zurich.ibm.com

July 31st, 2009

In today’s internet-driven world, web-based applications are increasingly replacing
traditional stand-alone applications, and for good reasons. You no longer need to install
and upgrade web-based applications. They are always up-to-date. Simply point your
browser to a particular site and you are ready to read your e-mail, to get driving
directions, to book your vacation, and to do your tax return, to name just a few examples.
Web-based applications can run on any platform that provides a browser. Moreover,
thanks to new programming techniques such as AJAX, they have become more
interactive and easier to use.

Developing web-based applications can be done using a variety of tools and languages.
However, the Java™ programming language and Java servlets are the ideal choice
because of a number of attractive features, namely, portability, efficiency, safety,
extensibility, and flexibility. Few viable alternatives exist that can be considered equally
powerful.

Over the past few years, I have developed an easy-to-use, easy-to-understand framework
based on Java servlets to facilitate the development of web-based applications. The
framework (called Hamlets) is the result of a radical simplification effort. In this article I
show you step by step how to write your first web-based application in Java using
Hamlets. At the end you will have enough knowledge to create small web-based
applications on your own.

 1

mailto:rpa@zurich.ibm.com

1. Setting up the development environment

Before you can start developing your first Java-based web application, you need to set up
your development environment. This article assumes that your machine does not contain
any development tools at all. The following steps demonstrate how to set up an efficient
development environment to write Java-based applications for the web.

1.1 Installing Java

It is very likely that at least one Java Runtime Environment (JRE) is already installed on
your computer. By entering ‘java –version’ on the command line (see Figure 1) you can
see the system’s default Java environment.

Figure 1: Checking for the default Java Runtime Environment (JRE)

Additional (older or newer) Java Runtime Environments (JREs) might be ‘hiding’ in
other directories on your hard disk (see Figure 2):

 2

Figure 2: Additional Java Runtime Environment (JRE)

To develop Java software, you need a Java Development Kit (JDK). A JDK not only
contains a Java Runtime Environment (JRE) but also a number of command-line
development tools to facilitate software construction. The installation is straightforward
and thus not described here.

For the example in this article JDK version 1.6 is recommended. The Resources section
below contains a link to the Sun Java website, from where you can download a suitable
version of Java for your machine.

1.2 Installing Tomcat

A web-based application is displayed by a browser (Microsoft® Internet Explorer®,
Mozilla Firefox, Opera, Safari, etc.) but runs on a web application server. Tomcat is such
a web application server. It consists of a servlet container (to run Java code in form of
servlets) and a web server (to provide static content (e.g.: html, css, gif, jpg, png files)).
Several other web application servers are available on the market with various feature
sets. Tomcat is an excellent choice, because it is reliable, lightweight, and open source. It
is the reference implementation for servlets.

Like Java, Tomcat exists in several versions. To develop Java-based web application
using Hamlets 1.5 you need at least version 5.5. The Resources section contains a
download link for Tomcat. The installation is straightforward and should not cause any
problems. Note that for software development, I do not recommend to install Tomcat as a
service on a Windows® NT/2000/XP machine. After you have successfully installed and
started Tomcat (see Figure 3), you should see the following screen (see Figure 4) in your
browser when you point it to http://localhost:8080/.

 3

http://localhost:8080/

Figure 3: Starting Tomcat from the command line with startup

Figure 4: Apache Tomcat/5.5.26 main screen

 4

1.3 Installing Eclipse

Next, you need to install an Integrated Development Environment (IDE) to facilitate your
development efforts. As one would expect, a number of IDEs are available to choose
from. For this article, Eclipse Classic Version 3.4.1 (Ganymede) is used. See the
Resources section for a download link and a link to several video tutorials. According to
its developers, Eclipse is not just a Java IDE but “an open development platform
comprised of extensible frameworks, tools and runtimes for building, deploying and
managing software across the lifecycle”.

After a successful installation, you should see the following screen when you start
Eclipse:

Figure 5: Starting Eclipse 3.4.1 for the first time

1.4 Installing WTP

The Eclipse software you just downloaded does not yet contain all functionality
necessary to develop web-based applications. An additional package is required: the Web
Tools Platform (WTP). You can use Eclipse’s updating mechanism to retrieve and install

 5

http://www.eclipse.org/webtools/

WTP. Select Help->Software Updates, and you will see the following screen (see Figure
6).

Figure 6: Eclipse software update screen

Next, add a new download site by pressing the ‘Add Site…’ button and specify its
location http://download/eclipse.org/webtools/updates/ (see Figure 7).

Figure 7: Adding the WTP update site

Press ‘OK’ to return to the previous screen, which now contains a list of available WTP
packages. Select the Web Tools Platform (WTP) 3.0.3 package (see Figure 8).

 6

http://download/eclipse.org/webtools/updates/

Figure 8: Selecting WTP from the software update screen

Next, press ‘Install…’ to bring up the installation screen (see Figure 9).

Figure 9: Installing WTP

Press ‘Next’, and accept the terms of the license agreements (see Figure 10).

 7

Figure 10: Accepting the terms of the license agreements.

The Eclipse system will now install the WTP 3.0.3 package and prompt you to restart
Eclipse when it has finished the installation.

1.5 Configuring Java for Eclipse

The Java Runtime Environment (JRE) will most likely already have been configured
properly during the installation of Eclipse. To verify whether this is indeed the case, you
can bring up the Preferences dialog (with Window->Preferences) and display a list of
JREs installed by selecting ‘Installed JREs’ from the tree view on the left (see Figure 11).

 8

Figure 11: Displaying all JREs installed

This is also the dialog to be used for adding, removing or editing JREs.

1.6 Configuring Tomcat for Eclipse

The final step in setting up the development environment for programming web-based
applications is to configure Tomcat for Eclipse. Use Window->Preferences to bring up
the Preferences dialog screen and select the ‘Runtime Environments’ node from the tree
control on the left-hand side of the dialog (see Figure 12).

 9

Figure 12: Server Runtime Environments

Next, press ‘Add…’ to define a new server runtime environment and select the Tomcat
version that you have just installed, i.e., version 5.5.x if you followed the instructions
herein (see Figure 13).

 10

Figure 13: Defining a new server runtime environment

Press ‘Next’ and specify the Tomcat installation directory (see Figure 14).

Figure 14: Specifying the Tomcat installation directory

 11

Now press ‘Finish’ to add the new server runtime environment to the list of environments
(see Figure 15).

Figure 15: Server Runtime Environments

You have now finished setting up your development environment (consisting of Eclipse,
Tomcat, and Java) and are ready to create your first web-based application. This
programming environment will serve you well, not just for the example shown in this
article, but for many more web-projects to come.

2. Developing a Guestbook web application

For most software projects, the tedious part is setting up the development environment,
which we have just done. So let’s move on to the more exciting stuff – the development
of a web-based guestbook application. The following steps show you how to create your
first hamlet-based web application, which will allow visitors of your website to leave
feedback about your web site.

2.1 Creating a web project

First, you need to create a dynamic web project in Eclipse. Select File->New->Other and
choose the ‘Dynamic Web Project’ node from the tree (see Figure 16).

 12

Figure 16: Creating a dynamic web project

Press ‘Next’ and enter the project name Guestbook (see Figure 17).

 13

Figure 17: Providing the project name

Press ‘Finish’ to start the creation of the dynamic web project called Guestbook. Once the
project has been created, it will show up in the Project Explorer (see Figure 18).

 14

Figure 18: Guestbook project showing up in the Project Explorer

2.2 Adding libraries

Most applications depend on a number of libraries, which have to be added to the project
so that Eclipse and the Java compiler know about them. For the Guestbook application,
you will need three libraries:

a) The hamlet-1.5.jar library provides the Hamlets framework to the Guestbook
application. It enforces the separation of code (Java) and presentation (html) in an
easy-to-use and easy-to-understand fashion. Download hamlets-bin.zip from
http://hamlets.sourceforge.net and unzip the package. Next, look for the hamlet-
1.5.jar library and simply drag and drop it into the lib folder of the Guestbook
project.
Note that the lib folder is part of the WEB-INF folder, which in turn is part of the
WebContent folder (see Figure 19).1

1 You may also use the older hamlet.jar library for this project, but if you do, you will have to change
serveDoc (req, res, “GuestBookTemplate.html”, handler); to serveDoc (req, res,
“/GuestBookTemplate.html”, handler); in the GuestBook.java file. Note the additional “/” in front of
“GuestBookTemplate.html”.

 15

http://hamlets.sourceforge.net/

b) The log4j-1.2.15.jar library is part of the Apache logging services and is required
by the Hamlets framework. Download apache-log4j-1.2.15.zip from
http://logging.apache.org/log4j/1.2/download.html and unzip the package. Next,
look for the log4j-1.2.15.jar library and add it to the lib folder using drag and
drop.

c) The commons-lang-2.4-bin.zip library is part of the Apache Commons project,

which focuses on all aspects of reusable Java components. Download commons-
lang-2.4-bin.zip from http://commons.apache.org/downloads/download_lang.cgi,
unzip the package, and add the commons-lang-2.4.jar library to the lib folder
using drag and drop (see Figure 19).

Libraries added to the lib folder of a dynamic web project are automatically deployed to
the web application server when you run the web application. In addition, they are also
automatically included in the war (Web Archive) file (see Section 4.1).

Figure 19: Libraries added to the Guestbook project

2.3 Writing the template to provide the static content

Next, we will develop the static content of the Guestbook application. This content
consists primarily of an HTML template which will be filled in with dynamic content (the
feedback left by visitors to your website) when the application is run.

 16

http://logging.apache.org/log4j/1.2/download.html
http://commons.apache.org/downloads/download_lang.cgi

To create the template, select the Guestbook project in the Project Explorer, and right-
click. Next, choose New->HTML. This brings up the following dialog box, in which you
can enter the template’s name: GuestBookTemplate.html (see Figure 20).

Figure 20: Creating the GuestBookTemplate.html file

After pressing ‘Finish’, you will see the following screen (see Figure 21).

 17

Figure 21: GuestBookTemplate.html after creation

Replace the auto-generated content with the following HTML code:

<HTML>
 <HEAD>
 <TITLE>Guestbook</TITLE>
 <LINK REL="stylesheet" TYPE="text/css" HREF="GuestBook.css" MEDIA="all" />
 </HEAD>
 <BODY>
 <FORM ACTION="GuestBook.html" METHOD="POST">
 <DIV CLASS="Title">Guestbook</DIV>
 <DIV CLASS="Text">Add your comment here:</DIV>
 <DIV CLASS="Text"><TEXTAREA CLASS="entryfield" NAME="Comment"></TEXTAREA></DIV>
 <DIV CLASS="Text"><INPUT CLASS="button" TYPE="SUBMIT" VALUE="Add" /></DIV>
 </FORM>
 <DIV CLASS="Text">
 <REPEAT ID="Comments">
 <DIV CLASS="Text">Date: <REPLACE ID="Date">26.9.2007</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">Hello world!</REPLACE></DIV>

 </REPEAT>
 </DIV>
 <HR CLASS="Separator" />
 <INCLUDE SRC="Copyright.html"/>
 </BODY>
</HTML>

Your screen should now look as follows:

 18

Figure 22: GuestBookTemplate.html in its finished form

A careful look at GuestBookTemplate.html reveals that this file references two additional
files: GuestBook.css and Copyright.html.

Add Copyright.html in the same way you added GuestBookTemplate.html and enter the
following HTML code for Copyright.html:

<DIV CLASS="Copyright">
 (C) Copyright IBM Corp. 2007, 2009.
</DIV>

The GuestBook.css file is a cascading style sheet (CSS). It contains style information
(font and color specifications) to give the Guestbook application an appealing look.

GuestBook.css contains the following content:

div.title {
 font-family: Helvetica, sans-serif;
 font-size: 14pt;
 font-weight: bold;
 text-align: left;
 background-color: lightblue;
 margin-bottom: 10px;
}

 19

div.text {
 font-family: Helvetica, sans-serif;
 font-size: 10pt;
 text-align: left;
}

div.copyright {
 font-family: Helvetica, sans-serif;
 font-size: 8pt;
 text-align: left;
}

textarea.entryfield {
 font-family: Helvetica, sans-serif;
 font-size: 10pt;
 text-align: left;
 width: 400px;
 height: 80px;
}

hr.separator {
 height: 1px;
 color: black;
}

input.button {
 font-family: Helvetica, sans-serif;
 font-size: 10pt;
}

To add a CSS file to your project, proceed as follows. Select the Guestbook project in the
Project Explorer and right-click to display the context-sensitive popup menu. From the
menu, select New->Other to bring up a dialog box, in which you select the CSS wizard
(see Figure 23).

Figure 23: Adding a CSS file

 20

Press ‘Next’ and provide the name for the cascading style sheet:

Figure 24: Naming the Cascading Style Sheet (CSS)

Press ‘Finish’ and enter the GuestBook.css content. Your screen should look now like
this:

 21

Figure 25: GuestBook.css in its completed form

Now it is time for a sneak preview of the Guestbook web application, even though it is
not yet finished. Select the GuestBookTemplate.html file from the Project Explorer and
right-click to display the popup menu. Select Open with -> Web Browser to see a preview
of the Guestbook application containing some placeholder content (Date: 26.9.2007
‘Hello world!’) for the time being (see Figure 26).

 22

Figure 26: Preview of the Guestbook

This preview (of GuestBookTemplate.html) gives you a first impression of how the
application will look once it is finished. The Hamlets framework used for this web
project enforces the complete separation of code and presentation. In other words, you
can start developing an application by designing a number of static screens containing
placeholder information and then bring these screens to life later by developing the Java
code that provides the actual dynamic content. As you can see, the Guestbook application
contains a first entry (Date: 26.9.2007 Hello world!), some dummy content, as this will
facilitate the layout during the development of the template. It will later be replaced by
actual content once the application has been finished and goes live.

2.4 Providing dynamic content by writing a hamlet

Next, we will develop the logic (the Java code) for the Guestbook application. The Java
code will not only fill in the GuestBook template (GuestBookTemplate.html) with the
actual dynamic content, but also store and retrieve the comments with the help of a file
(comments.dat). To create this logic, select the Guestbook project in the Project Explorer,
and right-click to bring up the context-sensitive popup menu. From the menu, select New-
>Class, which displays a dialog box to create a new Java class. Provide a class name
(GuestBook) and a package name (com.ibm.webui) (see Figure 27).

 23

Figure 27: Creating the GuestBook.java class

Press ‘Finish’ and enter the following Java code for GuestBook.java:

/**
 *
 * © Copyright International Business Machines Corporation 2007, 2009.
 * All rights reserved.
 *
 * The 'GuestBook' hamlet implements a simple guest book.
 *
 * File : GuestBook.java
 * Created : 2007/08/27
 *
 * @author Rene Pawlitzek (rpa@zurich.ibm.com)
 * @version 1.00, 2009/02/13
 * @since JDK 1.5
 *
 * History : 2007/08/27, rpa, new file
 * 2009/02/13, rpa, code review
 *
 */

package com.ibm.webui;

import java.io.*;
import java.util.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.hamlet.*;

import org.apache.commons.lang.*;
import org.apache.log4j.*;
import org.xml.sax.*;

 24

public class GuestBook extends Hamlet {

 private static final long serialVersionUID = 5264892082158101750L;

 private static final String fileName = "Comments.dat";

 private static Logger logger = Logger.getLogger (GuestBook.class.getName ());

 private static String filePath;
 private static Vector<Comment> comments;

 private static class Comment implements Serializable {

 private static final long serialVersionUID = -1199467372679306131L;

 public Date date;
 public String text;

 public Comment (Date date, String text) {
 this.date = date;
 this.text = text;
 } // Comment

 } // Comment

 private static class GuestBookHandler extends HamletHandler {

 private int i = 0;
 private Comment curComment;
 private Vector<Comment> comments;
 private SimpleDateFormat format;

 public GuestBookHandler (Hamlet hamlet, Vector<Comment> comments) {
 super (hamlet);
 this.comments = comments;
 format = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss");
 } // GuestBookHandler

 public int getElementRepeatCount (String id, String name, Attributes atts) {
 return comments.size ();
 } // getElementRepeatCount

 public String getElementReplacement (String id, String name, Attributes atts)
 throws Exception {
 if (id.equals ("Date")) {
 curComment = (Comment) comments.elementAt (i);
 return format.format (curComment.date);
 } else if (id.equals ("Comment")) {
 i++;
 return curComment.text;
 } // if
 return "?";
 } // getElementReplacement

 } // GuestBookHandler

 @SuppressWarnings("unchecked")
 public void init () {
 BasicConfigurator.configure ();
 logger.debug ("init");
 filePath = getServletContext ().getRealPath ("/");
 logger.debug (filePath);
 try {
 ObjectInputStream in =
 new ObjectInputStream (new FileInputStream (filePath + fileName));
 comments = (Vector<Comment>) in.readObject ();
 } catch (Exception e) {
 comments = new Vector<Comment> ();
 } // try
 } // init

 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 logger.debug ("doPost");
 String text = req.getParameter ("Comment");

 25

 if (text != null) {
 text = StringEscapeUtils.escapeHtml (text);
 Comment comment = new Comment (new Date (), text);
 comments.add (0, comment);
 ObjectOutputStream out =
 new ObjectOutputStream (new FileOutputStream (filePath + fileName));
 out.writeObject (comments);
 } // if
 doGet (req, res);
 } catch (Exception e) {
 logger.error ("", e);
 } // try
 } // doPost

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 logger.debug ("doGet");
 HamletHandler handler = new GuestBookHandler (this, comments);
 serveDoc (req, res, "GuestBookTemplate.html", handler);
 } catch (Exception e) {
 logger.error ("", e);
 } // try
 } // doGet

} // Guestbook

/* ----- End of File ----- */

When you have finished entering the Java source code, your screen will look like this
(see Figure 28). Don’t forget to save your work with File->Save.

 26

Figure 28: GuestBook.java source code

2.5 Running the web application

There is one more, small thing that you have to do before you can run the Guestbook
application. You need to provide the content for the web.xml file. This file configures the
Guestbook application to run properly on an application server. To change the web.xml
file already created, select it in the Project Explorer and right-click to display the popup
menu. Select Open with->Text Editor from the menu. Next, overwrite the existing content
with following lines:

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd">

 <display-name>Guestbook</display-name>

 <servlet>
 <description>A simple guest book hamlet</description>
 <display-name>GuestBook hamlet</display-name>
 <servlet-name>GuestBook</servlet-name>
 <servlet-class>com.ibm.webui.GuestBook</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>GuestBook</servlet-name>
 <url-pattern>/index.html</url-pattern>

 27

 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>GuestBook</servlet-name>
 <url-pattern>/GuestBook.html</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>default.htm</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 </welcome-file-list>

</web-app>

When you have done this, your screen will look like this:

Figure 29: Providing the content for web.xml

Now comes the big moment. You are ready to run the Guestbook application. Select the
Guestbook project in the Project Explorer, right-click to display the popup menu then
select Run As->Run on Server. You will see the following screen:

 28

Figure 30: Running the Guestbook application

Select ‘Tomcat v5.5 Server’ and check ‘Always use this server when running this
project’. Next, press ‘Finish’, and wait a short moment for the Guestbook application to
appear (see Figure 31). Congratulations! You have successfully developed and deployed
your first web-based application using the Hamlets framework in Eclipse. Now enter a
comment in the guestbook to test it.

 29

Figure 31: Running Guestbook application

Press ‘Add’ to add your comment to the page (see Figure 32).

 30

Figure 32: Guestbook web application displaying a first comment

As you can see, magic still exists! In the next section, I lift the secrets of the Java code of
the Guestbook application.

3. Explaining the web application

It is time now to explain how the Guestbook application works. Let’s start with the data
structure. The Java class Comment is an inner class used to hold the user comments in
memory.

 private static class Comment implements Serializable {

 public Date date;
 public String text;

 public Comment (Date date, String text) {
 this.date = date;
 this.text = text;
 } // Comment

 } // Comment

A comment in the Guestbook application consists of a date (to store the time when the
comment was made) and a string (to store the user comment content). All comments are
stored in a vector called comments throughout the lifetime of the application.

 31

 private static Vector<Comment> comments;

The Guestbook application itself is implemented by the GuestBook class, which extends
the Hamlet class. It contains three methods: init(), doPost() and doGet().

 public class GuestBook extends Hamlet {

 public void init () { … };
 public void doPost (…) { … };
 public void doGet (…) { … };

 } // GuestBook

When the application is loaded onto an application server, the init() function is called
once. The purpose of this function is to retrieve previously saved comments from a file
(comments.dat) by calling readObject on an ObjectInputStream.

 public void init () {
 BasicConfigurator.configure ();
 logger.debug ("init");
 filePath = getServletContext ().getRealPath ("/");
 logger.debug (filePath);
 try {
 ObjectInputStream in =
 new ObjectInputStream (new FileInputStream (filePath + fileName));
 comments = (Vector<Comment>) in.readObject ();
 } catch (Exception e) {
 comments = new Vector<Comment> ();
 } // try
 } // init

The doGet() function is called when a user points his or her browser to the Guestbook
application. It is responsible for displaying the actual content of the page.

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 logger.debug ("doGet");
 HamletHandler handler = new GuestBookHandler (this, comments);
 serveDoc (req, res, "GuestBookTemplate.html", handler);
 } catch (Exception e) {
 logger.error ("", e);
 } // try
 } // doGet

doGet() creates an instance of GuestBookHandler with new GuestBookHandler (…) and
passes this instance together with the name of a template (GuestBookTemplate.html) to
the serveDoc() method. Now the Hamlet framework takes action. It uses a SAX parser to
read the XHTML code from the template. In addition to the usual HTML tags, a template
can contain a number of ‘special’ tags, namely <REPLACE>, <REPEAT>, and
<INCLUDE>. Whenever one of these tags is found in the template, a method of the
GuestBookHandler class is invoked to provide dynamic content, which the Hamlets
framework combines with the static XHTML content from the template (see Figure 33).

 32

Figure 33: A Hamlet uses SAX for reading content from a template and calls a HamletHandler to
add dynamic content

The GuestBookTemplate.html contains the following XHTML sequence:

 <REPEAT ID="Comments">
 <DIV CLASS="Text">Date: <REPLACE ID="Date">26.9.2007</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">Hello world!</REPLACE></DIV>

 </REPEAT>

The Hamlet framework encounters the <REPEAT ID="Comments"> tag during template parsing
and records all subsequent XHTML content in memory. When the </REPEAT> tag is
encountered, it stops the recording and invokes the getElementRepeatCount() method of
the GuestBookHandler class:

 private static class GuestBookHandler extends HamletHandler {

 …
 public int getElementRepeatCount (String id, String name, Attributes atts) {
 return comments.size ();
 } // getElementRepeatCount
 …

 } // GuestBookHandler

The code in this method returns the number of comments (e.g., N = 2). Subsequently, the
recorded content is played back N times, producing the following sequence:

 <DIV CLASS="Text">Date: <REPLACE ID="Date">26.9.2007</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">Hello world!</REPLACE></DIV>

 <DIV CLASS="Text">Date: <REPLACE ID="Date">26.9.2007</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">Hello world!</REPLACE></DIV>

Next, the Hamlet framework parses this content. When the <REPLACE ID="Date"> tag is
encountered, the getElementReplacement() method is called:

 33

 private static class GuestBookHandler extends HamletHandler {

 …
 public String getElementReplacement (String id, String name, Attributes atts)
 throws Exception {
 if (id.equals ("Date")) {
 curComment = (Comment) comments.elementAt (i);
 return format.format (curComment.date);
 } else if (id.equals ("Comment")) {
 i++;
 return curComment.text;
 } // if
 return "?";
 } // getElementReplacement
 …

 } // GuestBookHandler

This function checks the tag’s ID attribute (ID="Date") and replaces the placeholder value
26.9.2007 between the <REPLACE> and </REPLACE> tags with the date of the n-th
comment. Similarly, the getElementReplacement() will replaces the other placeholder
values with the content of all comments. In the end, the sequence

 <DIV CLASS="Text">Date: <REPLACE ID="Date">26.9.2007</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">Hello world!</REPLACE></DIV>

 <DIV CLASS="Text">Date: <REPLACE ID="Date">26.9.2007</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">Hello world!</REPLACE></DIV>

will turn into:

 <DIV CLASS="Text">Date: <REPLACE ID="Date">13.3.2009</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">second comment</REPLACE></DIV>

 <DIV CLASS="Text">Date: <REPLACE ID="Date">1.1.2009</REPLACE></DIV>
 <DIV CLASS="Text"><REPLACE ID="Comment">first comment</REPLACE></DIV>

And finally, the Hamlets framework replaces the <INCLUDE SRC="Copyright.html"/> tag in
the template with the content of the copyright.html file. Attributes of a tag can be added,
deleted, and modified with the getElementAttributes() method. However, for this
example we did not need to do that.

The Guestbook application’s doPost() method is invoked when a user comment is entered
and submitted by pressing the ‘Add’ button in the browser.

 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException {
 try {
 logger.debug ("doPost");
 String text = req.getParameter ("Comment");
 if (text != null) {
 text = StringEscapeUtils.escapeHtml (text);
 Comment comment = new Comment (new Date (), text);
 comments.add (0, comment);
 ObjectOutputStream out =
 new ObjectOutputStream (new FileOutputStream (filePath + fileName));
 out.writeObject (comments);
 } // if
 doGet (req, res);
 } catch (Exception e) {
 logger.error ("", e);
 } // try
 } // doPost

 34

The web application server retrieves the comment in the Guestbook application by calling
req.getParameter (“Comment”). Next, the comment is HTML-escaped with
StringEscapeUtils.escapeHtml (text) from the Apache Commons Lang library and added
to the vector of comments as the first element with comments.add (0, comment). Finally,
all comments are saved to the disk with out.writeObject (comments) before doGet (req,
res) is called to return the content of the updated page.

As you can see, the Hamlets framework enforces the separation of content (provided by
the Java code) and presentation (XHTML code) so that Java and XHTML code do not
end up intermixed in the same source file. This separation is highly desirable because
developers writing Java code and designers writing XHTML code can work
independently of each other, and changes in the XHTML code will not require any
retesting of the Java code. Maintaining the application becomes a lot easier. More
information on Hamlets can be found in the “Introducing Hamlets” paper listed in the
Resources section. A summary of the full Hamlets functionality is given in Table 1.

 35

Template content HamletHandler callback method Result Description
<REPLACE ID=“Name”>
 Joe Average
</REPLACE>

public String getElementReplacement (String id,
 String name, Attributes atts) throws Exception {
 if (id.equals (“Name”))
 return “Rene Pawlitzek”;
 return “?”;
} // getElementReplacement

Rene Pawlitzek The <REPLACE> tag and the
getElementReplacement() callback
replace content in the template.

<REPEAT ID=“Rows”>
 <TR><TD>Row</TD></TR>
</REPEAT>

public int getElementRepeatCount (String id,
 String name, Attributes atts) throws Exception {
 if (id.equals (“Rows”))
 return 5;
 return 0;
} // getElementRepeatCount

<TR><TD>Row</TD></TR>
<TR><TD>Row</TD></TR>
<TR><TD>Row</TD></TR>
<TR><TD>Row</TD></TR>
<TR><TD>Row</TD></TR>

The <REPEAT> tag and the
getElementRepeatCount() callback
repeat sections in the template.

<TR ID=“Color”
BGCOLOR=“#FFFFFF”>

public Attributes getElementAttributes (String id,
 String name, Attributes atts) throws Exception {
 if (id.equals (“Color”))
 atts = Helpers.getAttributes (atts,
 “BGCOLOR”, “#FCFCFC”);
 return atts;
} // getElementAttributes

<TR ID=“Color”
BGCOLOR=“#FCFCFC”>

The getElementAttributes() callback
changes tag attributes in the template.

<TR ID=“Color”
BGCOLOR=“#FFFFFF”>

public Attributes getElementAttributes (String id,
 String name, Attributes atts) throws Exception {
 if (id.equals (“Color”))
 atts = Helpers.getAttributes (atts,
 “BGCOLOR”, null);
 return atts;
} // getElementAttributes

<TR ID=“Color”> The getElementAttributes() callback
removes tag attributes in the template.

<TR ID=“Color”> public Attributes getElementAttributes (String id,
 String name, Attributes atts) throws Exception {
 if (id.equals (“Color”))
 atts = Helpers.getAttributes (atts,
 “BGCOLOR”, “#FCFCFC”);
 return atts;
} // getElementAttributes

<TR ID=“Color”
BGCOLOR=“#FCFCFC”>

The getElementAttributes() callback
adds tag attributes in the template.

<INCLUDE ID=“Copyright”
SRC=“copyright.html” />

 <DIV>
 © Copyright IBM Corp. 2009.
<DIV>

The <INCLUDE> tag inserts content
into the template.

Table 1: Functionality of the Hamlets framework

 36

4. Deploying the web application

You now have all the information to write (small) web-based applications in Eclipse on
your own. Eventually, you will want to run your web apps on the production server of
your company. To do so, you must package the application. In other words, you need to
produce a WAR file (containing your web application), which you can then install on the
web application server of your production system.

4.1 Producing a WAR file by exporting the project

Producing a WAR file is similar to generating an .exe file in a Windows development
environment. A WAR file is a web archive; it contains all parts of a web application in a
single ZIP file. Instead of using a .zip ending, WAR files use the extension .war. The
generation of a WAR file in Eclipse is straightforward. Select the Guestbook application
in the Project Explorer and right-click. From the popup menu choose Export->WAR file
to display the Export dialog and enter a destination for the WAR file (see Figure 34).

Figure 34: Creating the GuestBook.war file

Press ‘Finish’ to create the GuestBook.war file. You can view the content of this web
archive with WinZip or any other tool that can handle zip files (see Figure 35).

 37

Figure 35: Opening the GuestBook.war file with WinZip

A closer look at GuestBook.war reveals that the web archive contains a number of
already familiar items:

• The template GuestBookTemplate.html with placeholder content, the
Copyright.html file with the copyright message, and the cascading style sheet
GuestBook.css with font and color instructions.

• The three libraries: commons-lang-2.4.jar, hamlet-1.5.jar, and log4j-1.2.15.jar.

• The three class files GuestBook.class, GuestBook$Comment.class and

GuestBook$GuestBookHandler.class containing the logic (Java bytecode) of the
Guestbook application.

• The web.xml file with instructions for the application server on how to run the

Guestbook application.

4.2 Installing the WAR file on an application server

You can give the GuestBook.war file to other people and ask them to have a look at your
first web-based application. Anyone who runs the Tomcat web application server on their

 38

machine can simply extract the GuestBook.war file into a newly created subdirectory of
the webapps directory to install your application (see Figure 36).

Figure 36: Installing GuestBook by extracting GuestBook.war in the GuestBook subdirectory

After GuestBook.war has been unzipped, your application is ready to be used. To run it,
they simply have to point the browser to
http://localhost:8080/GuestBook/GuestBook.html (see Figure 37).

 39

http://localhost:8080/GuestBook/GuestBook.html

Figure 37: Guestbook application in action

There is another (more convenient) way to install a web application. Most web
application servers provide a web-based application to install WAR files (even remotely).

Unfortunately, Tomcat’s administration web application is no longer installed by default.
You need to download and install the “admin” package in order to use it (see Figure 38).
For more information check the Resources section.

 40

Figure 38: Installing GuestBook.war with the Tomcat Web Application Manager

If you do not see the Guestbook application in the browser and instead encounter an error
message (see below), Tomcat is quite likely running with an older Java version.

 41

SEVERE: Allocate exception for servlet GuestBook
java.lang.UnsupportedClassVersionError: Bad version number in .class file
 at java.lang.ClassLoader.defineClass1(Native Method)
 at java.lang.ClassLoader.defineClass(ClassLoader.java:620)
 at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:124)
 at org.apache.catalina.loader.WebappClassLoader.findClassInternal(WebappClassLoader.java:1853)
 at org.apache.catalina.loader.WebappClassLoader.findClass(WebappClassLoader.java:875)
 at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1330)
 at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1209)
 at org.apache.catalina.core.StandardWrapper.loadServlet(StandardWrapper.java:1068)
 at org.apache.catalina.core.StandardWrapper.allocate(StandardWrapper.java:791)
 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:127)
 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:174)
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127)
 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117)
 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108)
 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:174)
 at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:874)
 at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665)
 at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528)
 at org.apache.tomcat.util.net.LeaderFollowerWorkerThread.runIt(LeaderFollowerWorkerThread.java:81)
 at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:689)
 at java.lang.Thread.run(Thread.java:595)

To make things work, you need to upgrade to a more recent Java release (1.5 or 1.6).

You are now able to create Java-based web applications with the Hamlets framework that
(thanks to Java) are cross-platform. In other words, your Guestbook application can run
on a low-end PC or a high-end mainframe, as well as on everything in between.

If you want to know more about the Hamlets framework, read the other Hamlets articles.
I hope you enjoy your journey.

Happy Programming!

Acknowledgments

I thank Andreas Kind, Mathias Bjoerkqvist, and Xiao-Yu Hu for their valuable comments
and suggestions.

Resources
For learning:

• “Introducing Hamlets”, René Pawlitzek (developerWorks, March 2005): This
article introduces the basic ideas behind Hamlets and describes the very first
implementation.

• “Programming Hamlets”, René Pawlitzek (developerWorks, May 2005): This

tutorial illustrates various aspects of Hamlet programming as it provides a number
of practical Hamlet examples.

• “Implementing Hamlets”, René Pawlitzek (developerWorks, February 2006):

This article explains the current implementation of the Hamlets framework.

 42

http://www-128.ibm.com/developerworks/web/library/wa-hamlets/
http://www-128.ibm.com/developerworks/edu/wa-dw-wa-hamletprg-i.html
http://www-128.ibm.com/developerworks/web/library/wa-hamlets3/

• “Compiling Hamlets”, René Pawlitzek (developerWorks, June 2006): This article
introduces a method of compiling Hamlet templates to improve application
performance.

• “Embedding Hamlets”, René Pawlitzek (developerWorks, June 2007): This article

shows how to write a web-based user interface for embedded devices running
OSGi.

• “Java Servlet Programming”, Jason Hunter, O’Reilly & Associates, Inc.: This is

an excellent book on servlets, which are the key components of server-side Java
development.

• “Tomcat – The Definitive Guide”, Jason Brittain and Ian Darwin, O’Reilly &

Associates, Inc.: This book describes the Apache Tomcat application server in
great detail.

• “HTML & XHTML – The Definitive Guide”, Chuck Musciano and Bill Kennedy,

O’Reilly & Associates, Inc.: This book describes the Hypertext Markup Language
(HTML) and the Extensible Hypertext Markup Language (XHTML).

• “Cascading Style Sheets”, Eric A. Meyer, O’Reilly & Associates, Inc.: This book

describes how to control the layout of web pages with Cascading Style Sheets.

• Find out more about Hamlets and Web application at Wikipedia.

• Watch these video tutorials to learn more about Eclipse and Java.

To get products and technologies:

• Hamlets home page: Now that this project is open source, check it out on
SourceForge.

• Java: Get your “cup” of Java from Sun Microsystems.

• Log4j: Download this logging package from the Apache Project.

• Commons: Check out this Apache project which focuses on reusable Java

components.

• Tomcat: Download this servlet container and Web server from the Apache
Project.

• Eclipse: The open source IDE used in this article.

 43

http://www-128.ibm.com/developerworks/web/library/wa-hamlets4/
http://www.ibm.com/developerworks/web/library/wa-embedhamlets/
http://oreilly.com/catalog/9780596000400/index.html
http://oreilly.com/catalog/9780596101060/index.html
http://oreilly.com/catalog/9780596527327/
http://oreilly.com/catalog/9780596527334/
http://en.wikipedia.org/wiki/Hamlets
http://en.wikipedia.org/wiki/Web_application
http://eclipsetutorial.sourceforge.net/
http://hamlets.sourceforge.net/
http://www.java.com/
http://logging.apache.org/log4j/
http://commons.apache.org/
http://tomcat.apache.org/
http://www.eclipse.org/

About the author

René Pawlitzek is a citizen of Liechtenstein and holds an engineering degree in computer
science from the Swiss Federal Institute of Technology (ETH Zürich). René works as a
research and development engineer and as a project manager for the Systems
Management group at the IBM Zurich Research Laboratory in Switzerland. Before
coming to IBM, he worked in California for Hewlett-Packard, WindRiver Systems, and
Borland International.

Trademarks
IBM is trademarks of International Business Machines Corporation in the United States, other countries, or both. Java and all Java-
based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft,
Windows, and Internet Explorer are trademarks of Microsoft Corporation in the United States, other countries, or both. Other
company, product, or service names may be trademarks or service marks of others.

 44

http://www.pawlitzek.com/

	rz3747-body.pdf
	 1. Setting up the development environment
	1.1 Installing Java
	1.2 Installing Tomcat
	1.3 Installing Eclipse
	1.4 Installing WTP
	1.5 Configuring Java for Eclipse
	1.6 Configuring Tomcat for Eclipse

	2. Developing a Guestbook web application
	2.1 Creating a web project
	2.2 Adding libraries
	2.3 Writing the template to provide the static content
	2.4 Providing dynamic content by writing a hamlet
	2.5 Running the web application

	3. Explaining the web application
	4. Deploying the web application
	4.1 Producing a WAR file by exporting the project
	4.2 Installing the WAR file on an application server

	Acknowledgments
	Resources
	For learning:
	To get products and technologies:
	About the author
	Trademarks

